هماهنگی حفاظت غیرمتمرکز مبتنی بر عامل برای شبکه های توزیع در حضور منابع تولید پراکنده تجدیدپذیر با استفاده از دستگاه های الکترونیکی هوشمند
محورهای موضوعی :
مهندسی برق قدرت
مجید رستم نیا
1
,
محمدصادق رستم نیا
2
,
احسان حیدریان فروشانی
3
*
,
سید فریبرز زارعی
4
,
سید حسین حسینیان
5
1 - دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
4 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی قم، قم، ایران
5 - دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران
تاریخ دریافت : 1402/01/10
تاریخ پذیرش : 1402/03/31
تاریخ انتشار : 1402/09/01
کلید واژه:
تولید پراکنده,
سیستم چند عاملی,
دستگاه الکترونیکی هوشمند,
IEC-61850,
هماهنگی حفاظتی,
چکیده مقاله :
با افزایش روز افزون منابع تولید پراکنده تجدیدپذیر در شبکه های توزیع و نیز افزایش وسعت شبکه، تعداد ارتباطات مبتنی بر عامل در سیستم های حفاظت بطور چشمگیری افزایش خواهند یافت؛ که نقش حیاتی در سیستم حفاظتی به منظور تشخیص خطا و حفظ هماهنگی خواهند داشت. علیرغم ماهیت سریع و مطمئن سیستم های چندعاملی، احتمال عملکرد نامناسب به خصوص در طرح های هماهنگی حفاظتی متمرکز به دلیل وجود یک بار ارتباطی سنگین وجود دارد. به همین منظور این مقاله یک روش خود ترمیمی هوشمند را در شرایط خطا ارائه می دهد، که هماهنگی حفاظتی را در یک تک سطح کنترل و بدون وابستگی به سطوح مخابراتی بالاتر انجام می دهد. عملکرد غیرمتمرکز طرح پیشنهادی با استفاده از دستگاه های الکترونیکی هوشمند و مخابرات توزیع شده بیان می شود. بر این اساس، حفظ هماهنگی در این ساختار با استفاده از قابلیت ارتباط نقطه به نقطه سرعت بالا از پروتکل IEC-61850 GOOSE انجام خواهد شد. همچنین، به منظور جلوگیری از هرگونه قطع برق ناشی از تنظیمات حفاظتی نامناسب، یک الگوریتم مستقل از نفوذ DG، بدون کمک پردازشگر مرکزی و با استفاده از سرویس های پیام GOOSE ارائه شده است. در نهایت، صحت عملکرد الگوریتم پیشنهادی با طرح سناریوهای مختلف و شبیه سازی یک شبکه توزیع عملی توسط نرم افزار ETAP ارزیابی می شود.
چکیده انگلیسی:
By increasing the penetration level of renewable distributed generations and increasing the size of the distribution networks, the more number of agent-based protection systems with its communication infrastruture will be used. Such systems play a vital role in the protection system to detect the faults and maintain the protection coordination. Despite the fast and reliable nature of multi-agent systems, there is a possibility of poor performance especially in protection coordination schemes with heavy communication load. For this purpose, this paper presents an intelligent self-healing method under fault conditions, which provides the protection coordination in a single control level without dependence on a higher communication level. The decentralized performance of the proposed scheme is expressed by using intelligent electronic devices and distributed communication. Accordingly, the coordination is done using the high-speed point-to-point communication capability of the IEC-61850 GOOSE protocol. Also, to avoid power outages due to the protection system malfunction, an algorithm independent of DG peneration and based on GOOSE message service mechanism is proposed, which does not need a central processor. Finally, the performance of the proposed algorithm is evaluated under different scenarios in a practical distribution network using ETAP software environment.
منابع و مأخذ:
B. Fani, H. Bisheh, and I. Sadeghkhani, “Protection coordination scheme for distribution networks with high penetration of photovoltaic generators”, IET Generation, Transmission & Distribution, vol. 12, no. 8, pp. 1802-1814, March. 2018, doi: 10.1049/iet-gtd.2017.1229.
S. F. Zarei, H. Mokhtari and F. Blaabjerg, "Fault Detection and Protection Strategy for Islanded Inverter-Based Microgrids," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 472-484, Feb. 2021, doi: 10.1109/JESTPE.2019.2962245.
M. Tariq, K. Khatri, M. I. U. Haque, M. A. Raza, S, Ahmed and M. Muzammil, “Investigation of the Effects of Distributed Generation on Protection Coordination in a Power System”, Engineering, Technology and Applied Science Research, vol. 11, no. 5, pp. 7628-7634, Oct. 2021, doi: 10.48084/etasr.4338.
H. Bisheh, B. Fani and G. Shahgholian, “A novel adaptive protection coordination scheme for radial distribution networks in the presence of distributed generation”, International Transactions on Electrical Energy Systems, vol. 31, no. 3, Jan. 2021, doi: 10.1002/2050-7038.12779.
S. B. Naderi, M. Negnevitsky, A. Jalilian, M. Hagh and K. Muttaqi, “Optimum Resistive Type Fault Current Limiter: An Efficient Solution to Achieve Maximum Fault Ride-through Capability of Fixed Speed Wind Turbines during Symmetrical and Asymmetrical Grid Faults”, IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 538-548, Jan-Feb, 2017, doi: 10.1109/TIA.2016.2611665.
Q. Zeng, Z. Zhang, M. Xu, J. Zhu, T. Chi and T. Wei, “A coordinated relay protection strategy of distribution network based on fault current limiting”, Energy Reports, vol. 8, no. 13, pp. 380-387, Nov. 2022, doi: 10.1016/j.egyr.2022.08.036.
S. F. Zarei and S. Khankalantary, “Protection of active distribution networks with conventional and inverter-based distributed generators”, International Journal of Electrical Power & Energy Systems, vol. 129, July. 2021, doi: 10.1016/j.ijepes.2020.106746.
P. Singh and A. k. Pradhan, "A Local measurement based protection technique for distribution system with photovoltaic plans", IET Renewable Power Generation, vol. 14, no. 6, pp. 996-1003, April 2020, doi: 10.1049/iet-rpg.2019.0996.
H. A. Abdel-Ghany, A. M. Azmy, N.I. Elkalashy and E. M. Rashad, “Optimizing DG penetration in distribution networks concerning protection schemes and technical impact”, Electric Power Systems Research, vol. 128, pp. 113-122, Nov. 2015, doi: 10.1016/j.epsr.2015.07.005.
M. A. Gaber, R. A. El-Sehiemy, T. F. Megahed, Y. Ebihara and S. M. Abdelkader, “Optimal settings of multiple inverter-based distributed generation for restoring coordination of DOCRs in mesh distribution networks”, Electric Power System Research, vol. 213, Dec. 2022, doi: 10.1016/j.epsr.2022.108757.
S. Conti, “Analysis of distribution network protection issues in presence of dispersed generation”, Electric Power Systems Research, vol. 79, no. 1, pp. 49-56, Jan. 2009, doi: 10.1016/j.epsr.2008.05.002.
C. Prapanukool, and S. Chaitusaney, “An appropriate disconnecting time of distributed generation by optimal protection setting and transformer connection type”, IEEE International Conferenceon Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–4, May 2012, doi: 10.1109/ECTICon.2012.6254264.
L. F. D. F. Gutierres, L. Mariotto, G. Cardoso and F. Loose, “Recloser-fuse coordination protection for inverter-based distributed generation systems”, IEEE, 50th International Universities Power Engineering Confrence (UPEC), pp. 1-6, Sept. 2015, Doi: 10.1109/UPEC.2015.7339778.
M. Singh, T. Vishnuvardhan and S. G. Srivani, “Adaptive protection coordination scheme for power networks under penetration of distributed energy resources”, IET Generation, Transmission & Distribution, vol. 10, pp. 3919-3929, Nov. 2016, doi: 10.1049/iet-gtd.2016.0614.
P. Dorosti, M. Moazzami, B. Fani and P. Siano, “An adaptive protection coordination scheme for microgrids with optimum PV resources”, Journal of Cleaner Production, vol. 340, pp. 130723, March 2022, doi: 10.1016/j.clepro.2022.130723.
A. Abbasi, H. KazemiKargar and T. SoleymaniAghdam, “Adaptive Protection Coordination with Setting Groups Allocation”, International Journal of Renewable Energy Research, vol. 9, no. 2, pp. 1-9, April 2019, doi: :10.20580/ijrer.v9i2.9266.g7647.
A. Ataee-Kachoee, H. Hashemi-Dezaki and A. Ketabi, “Optimized adaptive protection coordination of microgrids by dual-setting directional overcurrent relays considering different topologies based on limited independent relays' setting groups”, Electric Power Systems Research, vol. 214, no. 6, Jan 2023, doi: 10.1016/j.epsr.2022.108879.
M. Yousaf, A. Jalilian, K. M. Muttaqi and D. Sutanto “An Adaptive Overcurrent Protection Scheme for Dual-Setting Directional Recloser and Fuse Coordination in Unbalanced Distribution Networks With Distributed Generation”, IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 1831-1842, March 2022, doi: 10.1109/TIA.2022.3146095.
A. H. El-Hamrawy, A. A. M. Ebrahiem and A. I. Meghdad, “Improved Adaptive Protection Scheme Based Combined Centralized/Decentralized Communications for Power Systems Equipped With Distributed Generation”, IEEE ACCESS, vol. 10, pp. 97061-97074, Jan. 2022, doi: 10.1109/ACCESS.2022.3205312.
S. F. Zarei, and M. Parniani. “A comprehensive digital protection scheme for low-voltage microgrids with inverter-based and conventional distributed generations”, IEEE Transactions on Power Delivery 32.1 (2016): 441-452.
M. Hojjati, M. Tavoosi, M. R. Yousefi, G. Shahgholian and A. R. Seifi, “MAS based intelligent protection coordination scheme for distribution network with distributed generation”, Technovations in Electrical Engineering & Green Energy System, vol. 1, no. 2, pp. 45-62, July. 2022, doi: 10.30486/teeges.2022.1960240.1018.
E. Abbaspour, B. Fani, E. Heydarian-Forushani, & A. Al-Sumaiti, (2022). “A multi-agent based protection in distribution networks including distributed generations”, Energy Reports, 8, 163-174.
D. Alibeigi, E. Abbaspour, B. Fani and H. Samet, “An Intelligent Multi-Agent Based Approach For Protecting Distribution Networks”, Technovations in Electrical Engineering & Green Energy System, vol. 1, no. 1, pp. 36-62, June. 2022, doi: 10.30486/teeges.2022.691104.
A. Zidan and E. El-Saadany, “A cooperative multiagent framework for self-healing mechanisms in distribution system”, IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1525-1539, Sept. 2012, doi: 10.1109/TSG.2012.2198247.
P. Peidaee, A. Kalam and J. Shi, “Integration of a Heuristic Multi-Agent Protection System into a Distribution Network Interconnected with Distributed Generation”, Energies, vol. 13, no. 20, pp. 1-25, Oct. 2020, doi: 10.3390/en13205250.
H. Wan, K. K. Li and K. P. Wong, “An Adaptive Multiagent Approach to Protection Relay Coordination With Distributed Generators in Industrial Power Distribution System”, IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 2118-2124, Oct. 2010, doi: 10.1109/TIA.2010.2059492.
E. Abbaspour, B. Fani and E. Heydarian-Foroushani, “A bi-level multi agent based protection scheme for distribution networks with distributed generation”, International Journal of Electrical Power & Energy Systems, vol. 112, pp. 209-220, Nov. 2019, doi: 10.1016/j.ijepes.2019.05.001.
Z. Liu, C. Su, H. K. Høidalen and Z. Chen, “A Multiagent System-Based Protection and Control Scheme for Distribution System With Distributed-Generation Integration”, IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 536-545, Feb. 2017, doi: 10.1109/TPWRD.2016.2585579.
G. Zhabelova and V. Vyatkin, “Multiagent Smart Grid Automation Architecture Based on IEC 61850/61499 Intelligent Logical Nodes”, IEEE Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2351-2362, May 2012, doi: 10.1109/TIE.2011.2167891.
A. Manickam, S. Kamalasadan, D. Edwards and S. Simmons, “A novel self-evolving intelligent multiagent framework for power system control and protection”, IEEE Systems Journal, vol. 8, no. 4, pp.1086-1095, Dec. 2014, doi: 10.1109/JSYST.2013.2269731.
Z. Zhu, B. Xu, Ch. Brunner, T. Yip and Y. Chen, “IEC 61850 Configuration Solution to Distributed Intelligence in Distribution Grid Automation”, Energies, vol. 10, no. 4, pp. 1-17, April. 2017, doi: 10.3390/en10040528.
T. Strasser, F. Andren, J. Kathan, C. Cecati, C. Buccella, P. Siano, P. Leitao, G. Zhabelova, V. Vyatkin, P. Vrba and V. Marik, “A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems”, IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2424-2438, April 2015, doi: 10.1109/TIE.2014.2361486.
H. Lei, C. Singh and A. Sprintson , “Reliability Modeling and Analysis of IEC 61850 Based Substation Protection Systems”, IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2194-2202, Sept. 2014, doi: 10.1109/TSG.2014.2314616.
M. G. Maleki, H. Javadi, M. Khederzadeh, M. Bayrami and S. Farajzadeh, “Data Exchange Standardization in a Microgrid Protection Scheme According to the IEC 61850”, IEEE Smart Grid Conference (SGC), pp. 130-137, Dec. 2015, doi: 10.1109/SGC.2015.7857422.
Communication networks and systems for power utility automation – Part7–4: Basic communication structure – Compatible logical node classes and data object classes, IEC61850, International Electrotechnical Commission, 2010.
P. Jamborsalamati, A. Sadu, F. Ponci and A. Monti, “Design implementation and real-time testing of an IEC 61850 based FLISR algorithm for smart distribution grids”, IEEE, Applied Measurements for Power Systems (AMPS), pp. 114-119, Nov. 2015, doi: 10.1109/AMPS.2015.7312748.
C. Kriger, S. Behardien and J-C Retonda-Modiya, “A detailed analysis of the GOOSE message structure in an IEC 61850 standard-based substation automation system”, International Journal of Computers Communications & Control, vol. 8, no. 5, pp. 708-721, Oct. 2013, doi: 10.15837/IJCCC.2013.5.329.
P. Ledesma, P. Jafari, S. Repo, A. Alvarez, F. Ramos, D. D. Giustina and A. Dede, “Event-Based Simulation of a Decentralized Protection System Based on Secured GOOSE Message”, Energies, vol. 13. No. 12, pp. 1-17, June. 2020, doi: 10.3390/en13123250.
_||_