بازیابی انرژی ترمز قطارهای درون شهری با استفاده از انتقال توان از طریق تزویج القایی: مطالعه موردی متروی اصفهان
محورهای موضوعی : مهندسی برق و کامپیوتراکبر براتی 1 , غضنفر شاهقلیان 2 *
1 - دانشکده مهندسي برق، واحد نجف¬آباد، دانشگاه آزاد اسلامی، نجف¬آباد، ايران
2 - دانشکده مهندسي برق، واحد نجف¬آباد، دانشگاه آزاد اسلامی، نجف¬آباد، ايران
کلید واژه: انتقال توان, بازیابی انرژی ترمز, تزویج القایی, قطارهای مترو,
چکیده مقاله :
مشکل آلودگی هوا ناشی از استفاده سوختهای فسیلی در حملونقل، باعث توسعه صنعت حمل و نقل برقی شده است. قطار درون شهری (مترو) مقرون به صرفهترین و گستردهترین وسیله حمل و نقل برقی است که یکی از روشهای حل مشکل ترافیک و آلودگی هوا در نظر گرفته میشود. با توجه به کمبود و محدودیت منابع تولید انرژی و هزینه زیاد تولید انرژی، نیاز به اجرایی مدیریت مصرف انرژی در صنعت مترو است. بازیابی انرژی الکتریکی و کاهش تلفات توان در سیستم ترمز قطار شهری یکی از روشهای ضروری و مهم جهت مصرف بهینه انرژی است. به کمک سیستم بازیابی انرژی ترمزی میتوان لختی حرکتی قطار که در ترمزهای اصطکاکی به گرما تبدیل میشود را به برق مصرفی تبدیل کرد. در ترمز ديناميكی، انرژي جنبشي چرخ با استفاده از حالت ژنراتوري سيستم کشش قطار به هنگام اعمال ترمز، به انرژي الكتريكي تبديل ميگردد که معمولاً این انرژی در مقاومتهای ترمزی تلف میشود. در این مقاله بازیابی انرژی ترمز قطارهای مترو با استفاده از انتقال توان از طریق تزویج القایی ارائه شده است. این ساختار برای بهینهسازی انرژی ترمز قطار ارائه شده که به عنوان نمونه در متروی اصفهان شبیهسازی و بررسی شده است. مدل پیشنهادی از یک مدار دوطرفه الکترونیک قدرت تشکیل شده است. اولیه مدار شامل یک اینورتر تمامپل تعبیه شده در داخل قطار متصل به سیمپیچ اولیه است و ثانویه آن یک مدار اینورتر تمامپل متصل به سیمپیچ ثانویه است که دز ایستگاههای مترو نصب میشود. ارتباط اولیه و ثانویه توسط تزویج القایی بین سیمپیچ اولیه و ثانویه برقرار میشود و انتقال توان ترمز به خارج از قطار انجام میگردد. مدل سیستم مورد مطالعه در محیط سیمولینک متلب پیادهسازی شده و نتایج شبیهسازی و نیز نمودار ترمز مکانیکی و نمودار توان کششی قطار نشان داده شده است.
The problem of air pollution caused by the use of fossil fuels in transportation has caused the development of the electric transportation industry. The intra-city train (metro) is the most economical and widespread means of electric transportation, which is considered one of the ways to solve the problem of traffic and air pollution. Due to the lack and limitation of energy production resources and the high cost of energy production, there is a need to implement energy consumption management in the metro industry. Recovering electrical energy and reducing power losses in the urban train braking system is one of the necessary and important methods for optimal energy consumption. With the help of braking energy recovery system, the inertia of the train, which is converted into heat in friction brakes, can be converted into consumed electricity. In dynamic braking, the kinetic energy of the wheel is converted into electrical energy using the generator mode of the train's traction system when braking is applied, and this energy is usually wasted in braking resistors. In this paper, braking energy recovery of metro trains using power transmission through inductive coupling is presented. This structure is presented to optimize the braking energy of the train, which has been simulated and investigated as an example in the Isfahan subway. The proposed model consists of a two-way power electronic circuit. The primary circuit consists of a full-bridge inverter installed inside the train connected to the primary coil, and the secondary circuit is a full-bridge inverter circuit connected to the secondary coil, which is installed in subway stations. The primary and secondary connection is established by induction coupling between the primary and secondary coils, and the braking power is transferred to the outside of the train. The studied system model is implemented in Simulink MATLAB environment and the simulation results as well as the mechanical brake diagram and the traction power diagram of the train are shown.
[1] A. Fathollahi, M. Gheisarnejad, B. Andresen, H. Farsizadeh, M.H. Khooban, "Robust artificial intelligence controller for stabilization of full-bridge converters feeding constant power loads", IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 70, no. 9, pp. 3504-3508, Sept. 2023, doi: 10.1109/TCSII.2023.3270751.
[2] M.A. Rezaei, A. Fathollahi, S. Rezaei, J. Hu, M. Gheisarnejad, A.R. Teimouri, R. Rituraj, A.H. Mosavi, M.H. Khooban, "Adaptation of a real-time deep learning approach with an analog fault detection technique for reliability forecasting of capacitor banks used in mobile vehicles", IEEE Access, vol. 10, pp. 132271-132287, Dec. 2022, doi: 10.1109/ACCESS.2022.3228916.
[3] Y. Yin, D. Li, Z. Han, S. Zhang, "Demand-driven flexible-periodicity train timetabling model and algorithm for a rail transit network", Computers and Industrial Engineering, vol. 187, Article Number: 109809, Jan. 2024, https://doi.org/10.1016/j.cie.2023.109809.
[4] Z. Tian, P. Weston, N. Zhao, S. Hillmansen, C. Roberts, L. Chen, "System energy optimisation strategies for metros with regeneration", Transportation Research Part C: Emerging Technologies, vol. 75, pp. 120-135, Feb. 2017, https://doi.org/10.1016/j.trc.2016.12.004.
[5] S. Yang, J. Wu, X. Yang, F. Liao, D. Li, Y. Wei, "Analysis of energy consumption reduction in metro systems using rolling stop-skipping patterns", Computers and Industrial Engineering, vol. 127, pp. 129-142, Jan. 2019, https://doi.org/10.1016/j.cie.2018.11.048.
[6] Y. Lu, L. Yang, H. Yang, H. Zhou, Z. Gao, "Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling", Transportation Research Part B: Methodological, vol. 168, pp. 27-55, Feb. 2023, https://doi.org/10.1016/j.trb.2022.12.008.
[7] D. He, Y. Yang, Y. Chen, J. Deng, S. Shan, J. Liu, X. Li, "An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer", Applied Energy, vol. 264, Article Number: 114770, April 2020, https://doi.org/10.1016/j.apenergy.2020.114770.
[8] X. Yang, Y. Li, X. Guo, M. Ding, J. Yang, "Simulation of energy-efficient operation for metro trains: A discrete event-driven method based on multi-agent theory", Physica A: Statistical Mechanics and its Applications, vol. 609, Article Number: 128325, Jan. 2023, https://doi.org/10.1016/j.physa.2022.128325.
[9] B. Guan, H. Li, H. Yang, T. Zhang, X. Liu, X. Wang, "Leveraging cost-effectiveness of photovoltaic-battery system in metro station under time-of-use pricing tariff", Journal of Cleaner Production, vol. 434, Article Number: 140268, Jan. 2024, https://doi.org/10.1016/j.jclepro.2023.140268.
[10] F. Shang, J. Zhan, Y. Chen, "An online energy-saving driving strategy for metro train operation based on the model predictive control of switched-mode dynamical systems", Energies, vol. 13, no. 18, Article Number: 4933, Sept. 2020, https://doi.org/10.3390/en13184933.
[11] A. Trivella, F. Corman, "Modeling system dynamics of interacting cruising trains to reduce the impact of power peaks", Expert Systems with Applications, vol. 230, Article Number: 120650, Nov. 2023, https://doi.org/10.1016/j.eswa.2023.120650.
[12] R. Liu, S. Li, L. Yang, "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy", Omega, vol. 90, Article Number: 101990, Jan. 2020, https://doi.org/10.1016/j.omega.2018.10.020.
[13] Y. Bai, Y. Cao, Z. Yu, T.K. Ho, C. Roberts, B. Mao, "Cooperative control of metro trains to minimize net energy consumption", IEEE Trans. on Intelligent Transportation Systems, vol. 21, no. 5, pp. 2063-2077, May 2020, doi: 10.1109/TITS.2019.2912038.
[14] C. Sumpavakupa, T. Kulworawanichpongb, "Multi-train movement simulation using MATLAB object-oriented programming", Applied Mechanics and Materials, vol. 763, pp. 153-158, May 2015, doi:10.4028/www.scientific.net/AMM.763.153.
[15] S. Su, T. Tang, Y. Wang, "Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model", Energies, vol. 9, no. 2, Article Number: 105, Feb. 2016, https://doi.org/10.3390/en9020105.
[16] G. Leoutsakos, A. Deloukas, K. Sarris, I. Apostolopoulos, C. Mamaloukakis, D. Kyriazidis, A. Bensmann, R. Hanke-Rauschenbach, "Metro traction power measurements sizing a hybrid energy storage system utilizing trains regenerative braking", Journal of Energy Storage, vol. 57, Article Number: 106115, Jan. 2023, https://doi.org/10.1016/j.est.2022.106115.
[17] G.M. Scheepmaker, R.M.P. Goverde, "Energy-efficient train control using nonlinear bounded regenerative braking", Transportation Research Part C: Emerging Technologies, vol. 121, Article Number: 102852, Dec. 2020, https://doi.org/10.1016/j.trc.2020.102852.
[18] G. Zhang, Z. Tian, P. Tricoli, S. Hillmansen, Y. Wang, Z. Liu, "Inverter operating characteristics optimization for dc traction power supply systems", IEEE Trans. on Vehicular Technology, vol. 68, no. 4, pp. 3400-3410, April 2019, doi: 10.1109/TVT.2019.2899165.
[19] F. Meishner, D.U. Sauer, "Wayside energy recovery systems in dc urban railway grids", eTransportation, vol. 1, Article Number: 100001, Aug. 2019, https://doi.org/10.1016/j.etran.2019.04.001.
[20] K.A. Kalwar, M. Aamir, S. Mekhilef, "Inductively coupled power transfer (ICPT) for electric vehicle charging- A review", Renewable and Sustainable Energy Reviews, vol. 47, pp. 462-475, July 2015, https://doi.org/10.1016/j.rser.2015.03.040.
[21] A.F.A. Aziz, M.F. Romlie, Z. Baharudin, "Review of inductively coupled power transfer for electric vehicle charging", IET Power Electronics, vol. 12, no. 14, pp. 3611-3623, Nov. 2019, https://doi.org/10.1049/iet-pel.2018.6011.
[22] J. Xu, X. Li, Z. Xie, C. Fu, R. Du, "Design and analysis of inductively coupled power transfer system on mooring buoy with double ultracapacitor chargers using indirect control", IEEE Trans. on Industrial Electronics, vol. 67, no. 6, pp. 4836-4845, June 2020, doi: 10.1109/TIE.2019.2928249.
[23] X. Ren, R. Liu, E. Tian, "T–S fuzzy model-based fault detection for inductively coupled power transfer systems with coil misalignment", IEEE Trans. on Instrumentation and Measurement, vol. 73, pp. 1-10, 2024, Art no. 3501410, doi: 10.1109/TIM.2023.3331393.
[24] L. Shi, Z. Yin, L. Jiang, Y. Li, "Advances in inductively coupled power transfer technology for rail transit", CES Transa. on Electrical Machines and Systems, vol. 1, no. 4, pp. 383-396, December 2017, doi: 10.23919/TEMS.2017.8241360.
[25] C. Xia, W. Wang, S. Ren, X. Wu, Y. Sun, "Robust control for inductively coupled power transfer systems with coil misalignment", IEEE Trans. on Power Electronics, vol. 33, no. 9, pp. 8110-8122, Sept. 2018, doi: 10.1109/TPEL.2017.2771532.