به کارگیری و مقایسه روشهای وزندهی ساده، تحلیل سلسله مراتبی فازی و ماشین بردار پشتیبان در شناسایی عوامل داخلی و خارجی در تحلیل سوات
محورهای موضوعی : پژوهش های مدیریت راهبردیعلی حائریان اردکانی 1 , حمیدرضا کوشا 2 , فاطمه میرسعیدی 3
1 - استاد دانشگاه صنعتی سجاد مشهد
2 - استادیار دانشگاه فردوسی مشهد
3 - دانشجوی کارشناسی ارشد مهندسی صنایع دانشگاه صنعتی سجاد مشهد
کلید واژه: مدیریت استراتژیک, تحلیل سلسله مراتبی فازی, ماشین بردار پشتیبان, عوامل داخلی و خارجی ماتریس swot, روش وزن دهی ساده,
چکیده مقاله :
سازمان ها برای دستیابی به موفقیت باید مسیر پیش روی خود را به طور شفاف مشخص کنند. به عبارت دیگر باید بدانند در کجا قرار دارد و به کجا خواهند رفت. مدیریت استراتژیک یکی از شناخته شده ترین رویکردهای مدیریتی است. یکی از مهم ترین مراحل مدیریت استراتژیکٍ شناسایی عوامل داخلی و خارجی سازمان است؛ زیرا اگر عوامل به درستی شناسایی شوند، می توان از آن ها برای تدوین صحیح و بهینه استراتژی ها استفاده نمود. این در حالی است که در کمتر پژوهشی به استفاده از روش های دقیق تر در شناسایی و اولویت بندی عوامل داخلی و خارجی پرداخته شده است. در این مقاله، سعی بر آن است تا از ابزارهای تصمیم گیری چند معیاره )تکنیک های وزن دهی ساده و تحلیل سلسله مراتبیفازی( و داده کاوی )ماشین بردار پشتیبان( در شناسایی عوامل داخلی و خارجی استفاده شود. مطالعه موردی این پژوهش، سازمان آب و فاضلاب مشهد است. بدین منظور ابتدا عوامل داخلی و خارجی توسط خبرگان و مدیران ارشد سازمان شناسایی و دسته بندی شده است. برای به کارگیری روش های وزن دهی ساده و تحلیل سلسله مراتبی فازی، ابتدا معیارهایی با توجه به تعریف عوامل داخلی و خارجی تعیین و وزن معیارها یک بار با کمک تحلیل سلسله مراتبی فازی و بار دیگر به روش وزن دهی ساده، تعیین شد و با اوزان به دست آمده، نمره هر عامل محاسبه و عوامل دسته بندی شدند. با همان معیارها )مشخصه ها( با کمک نرم افزار WEKA ، پس از پیش پرداز داده ها، عوامل با ماشین بردار پشتیبان کهیکی از دقیق ترین ابزارهای داده کاوی است، دسته بندی شدند. نتایج نشان داد که ماشین بردار پشتیبان در حالت چند دسته، از قدرت پیش بینی بالاتری برخوردار است
All organizations, must determine their future path; in other words, they must understand where they stand and where they are heading to. Strategic management is one of the most recognized management approaches for this purpose. One of the most important steps in strategic management is recognizing organization’s internal and external factors. If these factors are recognized correctly, they can be used to establish correct and optimal strategies. So far, few researchers have used exact methods for identifying and prioritizing internal and external factors. In this article, we try to use multi criteria (Sample Additive Weighting and Fuzzy Analytic Hierarchy Process techniques) and data mining (support vector machine) for reorganization of internal and external factors. The case study in this research is Water and Sewerage Company of Mashhad. First, organization’s internal and external factors are identified and classified by organization’s higher managers and experts. For applying Sample Additive Weighting and Fuzzy Analytic Hierarchy Process, first, the criteria according to internal and external factor’s definition are determined and criteria’s weights are identified by Fuzzy Analytic Hierarchy Process also Sample Additive Weighting. Then, by using these weights, the values for all factors are calculated and classified. Using these criteria (attributes) and WEKA software, after data preprocess, factors classified by Support Vector Machine that is one of the most accurate data mining approaches. The results show Support Vector Machine prediction more accurately compared to other techniques.
براین کوئین، جمیز و مینتزبرگ، هنری و ام جیمز، رابرت، مدیریت استراتژیک، ترجمه محمد صاحبی، مرکز آموزش مدیریت دولتی، 1373، ص 5
بصیری، مهدی، (1386)، کاربرد تکنیک دادهکاوی در مدیریت روابط مشتری، چهارمین همایش ملی تجارت الکترونیک
دیوید، فرد آر، (1393)، مدیریت استراتژیک، ترجمه دکتر علی پارسائیان و دکتر سید محمد اعرابی، انتشارات دفتر پژوهشهای فرهنگی، چاپ بیست و هشتم
عطائی، محمد، (1393)، تصمیمگیری چندمعیاره، انتشارات دانشگاه صنعتی شاهرود، چاپ دوم
طالقانی، محمد. شاهردوی، کامبیز. صانعی، فرزانه. (391)، مقایسه تطبیقی AHP و AHP فازی در رتبهبندی ترجیحات خرید (مورد مطالعه: صنعت لوازم خانگی)، مجموعه تحقیق در عملیات و کاربردهای آن، سال نهم، شماره اول (پیاپی32)، ص ص 81-91
Abdullah, L,. Zulkifli, N,. (2015), Integration of fuzzy AHP and interval type-2 fuzzy DEMATEl: An application to human resource management, Expert Systems with Applications 42 ,4397-4409
Akkaya, G,. Turanoglu, B,. Oztas, S,. (2015), An integrated fuzzy MOORA approach to the problem of industrial engineering sector choosing, Expert System With Applications, 9565-9573
Bas, E,. (2013), The integrated framework for analysis of electricity supply chain using an integrated SWOT-fuzzy TOPSIS methodology combined with AHP: The case of Turkey, Electrical Power and Energy Systems 44 , 897-907
Bozbura, F.T. Beskese, A.(2007), Prioritization of organizational capital measurement indicators using fuzzy AHP. Int. J.Approx. Reason. 44 , 124-147
Bozdag. C.E. C. Kahraman, D. Ruan, (2003), Fuzzy group decision making for selection among computer integrated manufacturing systems, Comput. Ind. 51 (1) ,13-29
Bracker, J., 1980. The Historical Development of the Strategic Management Concept. The Academy of Management Review. 5(2), 219–224
Bryson, John, M.M. “Strategic Planning of Public and Nonprofit Organization: A Guide to Strengthening and Sustaining Organizational Achivement, 3rd Edition, and Jossy-Bass (2004)
Carless, Hill, Strategic Management, Houghton Miffing Company, 1992, pp. 10-20
David, R. Fred., Fundamental of Strategic Management, London, A Bell & Howell Compant 1990, pp. 103-120
Buckley, J.J. (1985), Fuzzy hierarchical analysis, Fuzzy Sets Syst. 17 , 233-247
Chan. F.T.S. Kumar. N. (2007),Global supplier development considering risk factors using fuzzy extended AHP-based approach. OMEGA int. J. Manag. Sci. 35 (4) , 417-431
Chang, D.Y. (1996), Applications of the extent analysis method on fuzzy AHP, Eur. J. Oper. Res. 95 (3) ,649-655
Chang, W, L, other, (2015), Clustering and visualization of failure modes using an evolving tree, Expert Systems with Applications", Volume 42, Issue 20, 15 November (2015), Pages 7235–7244
Chen, LH. Hung, CC.(2010),An integrated fuzzy approach for the selection of outsourcing manufacturing partners in pharmaceutical R&D, Int. J. Prod. Res. 48 (24) ,7483-7506
Chiou, H.K. Tzeng G.H. Cheng, D.C. (2005). Evaluating sustainable fishing development strategies using fuzzy MCDM approach. OMEGA Int. J. Manag. Sci, 33(3) ,223-234
Corts.C,. Vapnik. V.N., (1995), Support vector networks, Match, Learn. 20 (1995) 273-297
Crisianini, N,. Shawe-Taylor, J,. (2000), Support vector machines and Other Kernl-Based Learning Methods, Cambridge University Press, 2000
Dedlgado, A, Romero, I, (2016) , Environmental conflict analysis using an integrated grey clustering
and entropy-weight method: A case study of a mining project in Peru, Environmental Modelling & Software 77 ,108-121
Duggan, Deirdre E, other, (2013), Identifying functional stakeholder clusters to maximize communication for the ecosystem approach to fisheries management, Marine Policy, Volume 42, November Pages 56–67
Ezzabadi, J, H,. Saryazdi, M, D,. Mostafapour, A,(2015), Implementing Fuzzy Logic and AHP into the EFQM model for performance improvement: A case study, Applied Soft Computing
Garg, Ch, P,. (2016), A robust hybrid decision model for evaluation and selection of the strategic alliance partner in the airline industry, Journal of Air Transport Management 52 55-66
Gold, S,. Awasthi, A,. (2015) , Sustainable global supplier selection extended towards sustainability risks from (1+n)th tier suppliers using fuzzy AHP based approach, IFAC-Papers on line 48-3 ,966-971
Gorener, A,. Toker, K,. Ulucay, K,.(2012), Application of combined SWOT and AHP: Case study for a manufacturing firm, 8th international Strategic management conference, Procedia-Social and Behavioral Sciences 58, 1525-1534
Haga, J,. other, (2015), Initial stage clustering when estimating accounting quality measures with self-organizing maps, Applications, Volume, 30 November, Pages 8327–8336
Kangas, J & et al, (2001), A ‘WOT: Integrating the AHP with SWOT Analysis, 6th ISAHP 2001 Proceedings, Berne, Switzerland, pp.189-198
Kangas, J & et al, (2003), Evaluating the management strategies of a forestland estate-the S-O-S approach, Journal of Environmental Management, 69, pp. 349-358
Kayakutlu, G. Buyukozkan, G. (2008),Assessing knowledge-based resources I a utility company: identify and priorities the balancing factors, Energy J. 33 (7) , 1027-1037
kilincci, O. Onal, S.A. (2011), Fuzzy AHP approach for supplier selection in a washing machine company, Expert Syst. Appl. 38 (8) , 9656-9664
Kurttila, M., Pesonen, J., Kangas, M. and Kajanus, M. (2000), Utilizing hierarchy process (AHP) in SWOT analysis a hybrid method and its application to a forest-certification case, Forest Policy and Economics, Vol.1, pp.41-52
Laarhoven, P.J.M, Pedrycz, . W. (1983), A fuzzy extension of Saaty`s priority theory, fuzzy sets Syst. 11, 229-241
Lee, Sungjoo., Park, Yongtae., (2009), The classification and strategic management of services in e-commerce:Development of service taxonomy based on customer perception, Expert Systems with Applications 36,pp. 9618–9624
Mangasarian, O,L., (1990), Data mining via support vector machines, Math. Program. 48 (1990) 303-338
Naghadehi, M.Z. Milkaeil, R. Ataei, M.(2009), The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran, Expert Syst. Appl.36 , 8218-822
Ni, T,. Zhai, J,. (2016), A matrix-free smoothing algorithm for large-scale support vector machines, Information Sciences 358-359 (2016) 29-43
Omran, A,M,. Khorshid, M,.(2014), Intelligent Environmental Scanning Approach (A Case Study: the Egyptian Wheat Crop Production)", 2013 International Conference on Applied Computing, Computer Science, and Computer Engineering (ICACC 2013), IERI Procedia 7 ( 2014 ) 28 – 34
Oommen, T. and Baise, L. G. (2010). Model development and validation for intelligent data collection for lateral spread displacements. ,Journal of Computing in Civil Engineering, ASCE, 24(6), 467-477.
Ozen, T., Garibaldi, J. A. (2004). Effect of type-2 fuzzy membership function shape on modelling variation in human decision making. In IEEE international conference on fuzzy systems (vol. 1-3, pp.971-976
Porter, Nichol., Competitive Advantage, New York: Free Press, 1985, 170-189
Somsuk, N,. (2013),Laosirihongthong, T,. A fuzzy AHP to to prioritize enabling factors for strategic management of university business incubators: Resource-based view, Technological forcasting & Social Change
Tamura, M., Nagata, H., & Akazawa, K. (2002). Extractrion and systems analysis of factors that prevent safety and security by structural models. In 41 st SICE annual conference. Osaka, Japan
Vahidnia, M.H. Alesheikh. AA. Alimohammadi, A.(2009), Hospital site selection using fuzzy AHP and its derivatives, J.Environ. Manage. 90 ,3048-3056
Vucijak, B,. Kurtagic, S, M,. Silajdzic, I,.(2015), Multicriteria decision making in selecting best solid waste management scenario: a municipal case study from Bosnia and Herzegovina, Journal of Cleaner Production, pp. 1-9
Yuksel, I, and Dagdeviren, M. (2007), Using the analytic network process (ANP) in a SWOT analysis – A case study for a textile firm, information Sciences, 177, pp. 3364-3382
Zare, K,. Mehri-Tekmeh, J,. Karimi, S,. (2015) , A SWOT framework for analyzing the electricity supply chain using an integrated AHP methology combined with fuzzy-TOPSIS, International strategic management review 3,66-80
_||_