سنتز و مشخصهیابی خواص نانوذرات مزومتخلخل سیلیکاتی توخالی با استفاده از قالب پلی استایرن
محورهای موضوعی : سنتز موادابوالحسن نجفی 1 * , مهدی خوئینی 2 , مصطفی امانی 3
1 - دانشگاه آزاد اسلامی واحد ساوه
2 - دانشگاه آزاد اسلامی - واحد ساوه
3 - دانشگاه آزاداسلامی، واحد ساوه
کلید واژه: سورفکتانت, نانو ذرات مزومتخلخل سیلیکاتی, پیش ماده TEOS, مایسل CTAB, قالب پلی استایرن,
چکیده مقاله :
در این پژوهش سنتز نانو ذرات سیلیکاتی مزومتخلخل توخالی با استفاده از پیش ماده تترا اتیل اورتو سیلیکات (TEOS) در حضور قالب پلی استایرن مورد بررسی قرار گرفت، فرآیند در یک محیط شیمیایی بر پایه الکلی با کنترل pH و افزودن فعال کننده سطحی ستیل تری-متیل آمونیم برمید (CTAB) در غلظت مناسب انجام گردید. برای ارزیابی سازوکار سنتز ذرات سیلیکاتی مزومتخلخل توخالی از روشهای آنالیز FTIR، DTA/TG، BET، DLS،XRD ، SEM و TEM استفاده شد. نتایج آنالیز پیوندی FTIR نشان داد که ذرات پیش سازنده TEOS در حین فرآیند سنتز با مواد فعال کننده CTAB پیوندهای سطحی برقرار کرده و همینطور وجود پیوندهای Si-O-Si (محدوده cm-1 1320-600 ) نشان دهنده تشکیل زنجیره های سیلیکاتی بر روی قالبهای پلی استایرن می باشد. مطالعات آنالیز حرارتی DTA/TG نشان داد ذرات سیلیکاتی را میتوان در دمای 380 درجه سانتیگراد سنتز کرد. آنالیز BET نشان داد سطح ویژهی این ذرات برابر با m2.g-1 1180 میباشند. نتایج پراشسنجی اشعه ایکس نشان داد که، محصول بدست آمده سیلیکای آمورف میباشد و فازهای ناخواسته در این سیستم تشکیل نشده است. منحنی توزیع DLS نشان داد که ذرات سنتز شده دارای ابعادی در محدوده اندازه 1 الی 10 نانومتر بوده و توزیع اندازه ذرات در محدودهی باریکی می باشد. تصاویر SEM موید کروی بودن نانوذرات با اندازه متوسط 25-30 نانومتر می باشد. در نهایت تصاویر میکروسکوپ الکترونی عبوری نشان داد که ذرات سیلیکاتی سنتز شده توخالی بوده بطوریکه قطر محفظه توخالی و قطر کل آن به ترتیب در حدود 30 و 80 نانومتر می باشد.
In this study, the synthesis of hollow mesoporous silicate particles was studied using TEOS precursor in the presence of a polystyrene template and CTAB surfactant micelles. The process was carried out in based on alcoholic system with pH control and adding CTAB surface activator at a suitable concentration. The results of the FTIR analysis showed that the pre-forming particles of TEOS formed surface boundaries during the synthesis process with CTAB surfactant agents. Also the presence of Si-O-Si bonds (range from 600 to 1320 cm-1) indicates the formation of silicate chains on polystyrene molds. Thermal analysis studies showed that using appropriate heat treatment and precise control, all organic compounds can be removed from the system and synthesized hollow mesoporous silica particle with the least structural defects at 380°C. The BET analysis showed that the specific surface of these synthesized mesoporous silicate particles is 1180 m2.g-1 X-ray diffraction results showed that the product obtained was amorphous silica and impurity phases are not formed in this system. The DLS analysis showed that the synthesized particles had dimensions ranging in size from 1 to 10 nm and the distribution of particle size has occurred in a narrow range. SEM images confirm the sphericality of nanoparticles with a mean size of 25-30 nm. Finally, the transmitted electron microscope images showed that the synthesized silicate particles were hollow, so that the diameter of the hollow cavity and its entire total diameter are about 30 and 80 nm, respectively.
[1] ن. احسانی، ح. رضایی، ف. گلستانی فرد و ا. نجفی، "ایران، سنتز و بررسی خواص پودر نانومتری سیلیکون کارباید به روش سل ژل"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 5، شماره 3، صفحه 11-17، پاییز 1390.
[2] R. Ciriminna, A. Fidalgo, V. Pandarus, & et al., “The sol-gel route to advancedsilica-based materials and recent applications”, Chem. Rev., Vol. 113, No. 8, pp. 6592–6620, 2013.
[3] W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia & D. Zhao, “Sol–gel design strategy for ultra-dispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries”, J. Am. Chem. Soc., Vol. 135 pp. 18300–18303, 2013.
[4] B. Li, Y. Song, C. Zhang & J. Yu, “Synthesis and characterization of nanostructured silicon carbide crystal whiskers by sol–gel process and carbothermal reduction”, Ceramics International, Vol. 40, pp. 12613–12616, 2014.
[5] Y. Shi, H. Li & L. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques”, Chem. Soc. Rev., Vol. 44, pp. 2744-2756, 2015.
[6] X. Zhuang, Y. Mai, D. Wu, F. Zhang & X. Feng, “Two-dimensional soft Nano materials: a fascinating” World of Materials, Vol. 27, pp. 403–427, 2015.
[7] Maziz, C. Plesse, C. Soyer, E. Cattan & F. Vidal, “Top-down approach for the direct synthesis, patterning, and operation of artificial micro muscles on flexible substrates”, ACS Appl. Mater. Interfaces., Vol. 8, No. 3, pp. 1559–1564, 2016.
[8] Y. Deng, C. Wang, J. Hu, W. Yang & S. Fu, “Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 262, No. 1–3, pp. 87–93, 2005.
[9] M. Toki, S. Miyashita, T. Takeuchi, S. Kanbe & A. Kochi, “A large-size silica glass produced by a new sol-gel process”, Journal of Non-Crystalline Solids, Vol. 100, No. 1–3, pp. 479-482, 1988.
[10] J. Li, T. Zhao, F. Li, B. Zong, Z. Du & J. Zeng, “A comparative study on the synthesis mechanism and microstructural development of hierarchical porous mullite monoliths obtained by the sol–gel process with three different silicon sources”, Ceramics International, Vol. 42, No. 4, pp. 4806–4818, 2016.
[11] M. Tang, X. Lin, M. Li, J. Li & S. Yin, “Construction of amperometric glucose biosensor based on in-situ fabricated hierarchical meso-macroporous SiO2 modified Au film electrodes”, Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 31, No. 4, pp. 736–742, 2016.
[12] H. Jeon, Chang S. Lee, R. Patel & J .H. Kim, “Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic rubbery comb copolymer”, ACS Appl. Mater. Interfaces, Vol. 7, No. 14, pp. 7767–7775, 2015.
[13] E. Yu. Stovpiaga, S. A. Grudinkin, D. A. Kurdyukov, Yu. A. Kukushkina, A. V. Nashchekin, V. V. Sokolov, D. R. Yakovlev & V. G. Golubev, “Monodisperse spherical meso–macroporous silica particles: Synthesis and adsorption of biological macromolecules”, Journal of Physics of the Solid State, Vol. 58, No. 11, pp. 2339–2344, 2016.
[14] Najafi, F. Golestani Fard, H. R. Rezaie & N. Ehsani, “Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method”, Powder Technology, Vol. 219, pp. 202–210, 2012.
[15] B. P. Singh, J. Jena, L. Besra & S. B. hattacharjee, “Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions”, Journal of Nanoparticles Research, Vol. 9, No. 5, pp. 797–806, 2007.
[16] ف. باورسی ها، م. منتظری پور، م. رجبی، س. غلامی و ن. مظفری، "سنتز و مشخصه یابی پودر کامپوزیتی TiO2/SiO2/SrFe12O19 با نانوساختار هسته/پوسته/پوسته"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 3، صفحه 137-148، پاییز 1397.
[17] H. Song & L. Zheng, “Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties”, Cellulose, Vol. 20, No. 4, pp. 1737–1746, 2013.
[18] P. M. Morea, S. B. Umbarkara & M. K. Dongarec, “Template-free sol–gel synthesis of high surface area mesoporous silica based catalysts for esterification of di-carboxylic acids”, Comptes Rendus Chimie, Vol. 19, No. 10, pp. 1247–1253, 2016.
[19] L. Kopanja, D. Žunić, B. Lončar, S. Gyergyek & M. Tadić, “Quantifying shapes of nanoparticles using modified circularity and ellipticity measures”, Measurement, Vol. 92, pp. 252–263, 2016.
[20] S. Zhang, L. Wen, J. Yang, J. Zeng, Q. Sun, Z. Li, D. Zhao & S. Dou, “Facile Fabrication of Dendritic Mesoporous SiO2-CdTe-SiO2 Fluorescent Nanoparticles for Bioimaging”, Particle and particle systems characteristics, Vol. 33, No. 5, pp. 261–270, 2016.
[21]س. نقیبی، ا. جمشیدی، م. برزگر و س. رمضانی، "بررسی ریزساختاری لایه نازک تیتانیا بر روی فولاد 316 به روش سل ژل (بهینه سازی متغیرهای فرآیند با روش آماری تاگوچی)"، فصلنامه فرآیندهای نوین در مهندسی مواد، دوره 6، شماره 4، صفحه 79-89، پاییز 1391.
_||_