تاثیر شرایط متفاوت رویشگاهی بر تغییرات اسیدهای آمینه و املاح معدنی در گیاه رمس Haloxylon salicornicum (Moq.) Bunge ex Boiss.
محورهای موضوعی : مجله علمی- پژوهشی اکوفیزیولوژی گیاهیمهدیه تجملیان 1 , حمید سودائی زاده 2 , اصغر مصلح آرانی 3 , محمدهادی راد 4 , محمدعلی حکیم زاده 5
1 - دانشجوی دکتری بیابانزدایی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران
2 - نویسنده مسئول، دانشیار و عضو هیئتعلمی دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران
3 - دانشیار و عضو هیئتعلمی دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران
4 - استادیار پژوهشی بخش تحقیقات جنگل و مرتع، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، استان یزد، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران
5 - استادیار و عضو هیئتعلمی دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران
کلید واژه: تنش شوری, تنظیم اسمزی, اسیدهای آمینه, تپههای ماسهای, پلایا,
چکیده مقاله :
شوری خاک از عوامل اصلی تأثیرگذار بر رشد و نمو گیاهان است. گیاه رمس Haloxylon salicornicum (Moq.) Bunge ex Boiss. بهعنوان یک گونه شورپسند، سطح وسیعی از اراضی بیابانی را به خود اختصاص داده و تاثیر قابل توجه در کنترل فرسایش بادی دارد. در پژوهش حاضر تغییرات اسیدهای آمینه و موادمعدنی گیاه رمس و ارتباط آنها در دو منطقه از شهرستان بافق با شرایط متفاوت خاکی (خاک شور-سدیمی پلایا و غیر شور تپههای ماسهای) در سال 1395 بررسی شد. نمونه برداری با طرح کاملا تصادفی و با 3 تکرار انجام شد. نتایج نشان داد در هر دو رویشگاه اسید آمینه سرین بیشترین سهم را در شکلگیری محتوی کل اسیدآمینه گیاه به عهده داشت. محتوی کل اسیدآمینه در دو منطقه اختلاف معنیداری در سطح یک درصد (01/0p<) داشت بهطوریکه در رویشگاه ماسه ای با 75/431 پیپیام بیش از رویشگاه پلایا با 38/268 پیپیام بود. اسیدآمینه آسپارژیک، گلوتامیک، سرین، گلیسین، آلانین، تیروزین، والین، متیونین در رویشگاه ماسهای بیش از رویشگاه پلایا بود. در حالی که اسیدآمینه گلوتامین و ترئونین در رویشگاه پلایا مقدار بیشتری داشت. نتایج بررسی مواد معدنی نشان داد بیشترین میزان فسفر، سدیم، کلر، آهن، منگنز، روی و مس در رویشگاه پلایا و بیشترین میزان نیتروژن در رویشگاه ماسهای بود. با توجه به تجمع یونهایی از قبیل سدیم در بافت گیاه در پلایا، میتوان مهمترین پاسخ فیزیولوژیکی گیاه رمس جهت تنظیم پتانسیل اسمزی را رقیق شدن شیره واکوئلی گیاه با تعدیل غلظت یونها در اندام گیاه دانست و نقش اسمولیتهایی نظیر اسیدهای آمینه را در درجات بعدی در نظر گرفت.
Soil salinity is one of the most important factors affecting plant growth. Haloxylon salicornicum (Moq.) Bunge ex Boiss., as a salt tolerant specie grows in a wide range of desert lands and has a significant impact on wind erosion control. The present study investigated the effects of different soil conditions (soil saline and non-saline-sodic playa -sand), on amino acids and minerals of H. salicornicum. Sampling was done Completely randomized design with three replications. The results showed that in both habitats, serine has the highest contribution to the formation of the content of total amino acids of the H. salicornicum .The content of total amino acid in the two regions was significantly different at 1% level (p <0.01), the highest amounts of total amino acid (414.75 ppM) measured in sandy habitat and lowest amount (268.38 ppM) measured playa habitat. Sparic acid, glutamate, serine, glycine, alanine, tyrosine, valine, methionine in the sandy habitat was more than Playa. While glutamine and threonine in Playa had a higher content. Mineral analysis showed that the highest amount of phosphorus, sodium, chlorine, iron, manganese, zinc and copper in playa and most of nitrogen were in sandy area. Accumulation of ions such as sodium in plant tissues in playa is the most important physiological response of H. salicornicum to the regulation of osmotic potential. The role of osmolites such as Amine acids are considered at a later stage.
امیدی، ح.، ف. موحدی پویا و ش. موحدی پویا. 1390. اثر هورمون سالسیلیک اسید و خراشدهی بر ویژگیهای جوانهزنی و محتوی پرولین، پروتئین و کربوهیدرات محلول گیاهچه کهورک در شرایط شوری. تحقیقات مرتع و بیابان. بیابان ایران زمستان. جلد 18. شماره 4: 608- 623.
توکلی، ح.، ع. ا.، پاریاب، غ.ر.، قادری و م. دشتی. 1384. بررسی برخی از خصوصیات بومشناختی گیاه رمس (Hammada salicornica)، تحقیقات مرتع و بیابان ایران، جلد12 شماره 3: 211-232.
جهانبازی، ح.، س. م. حسینی نصر، خ.، ثاقبطالبی و س م. حجتی. 1393. تأثیر تنش شوری بر فاکتورهای رویشی، پرولین، رنگیزههای گیاهی و جذب عناصر در اندام هوایی چهار گونه بادام وحشی. مجله پژوهشهای گیاهی، جلد 27، شماره 5: 777-787.
حیدرنژاد س. و ا. رنجبر فردوئی. 1393. بررسی تأثیر تنش شوری بر برخی ویژگیهای رشد و میزان تجمع یونی در گیاه اشنان (Seidlitzia rosmarinus L.). مجله علمی. پژوهشی مهندسی اکوسیستم بیابان. جلد 3 شماره 4: 1-10.
راد، م.ه.، م. سلطانی، م. زارع مهرجردی، و م. تجملیان. 1393. بررسی اثرات ناشی از تنش خشکی بر برخی ویژگیهای فیزیولوژیکی و مرفولوژیکی جمعیتهای مختلف سیاه تاغ (Haloxylon aphyllum)، فصلنامه علمی-پژوهشی تحقیقات مرتع و بیابان ایران، جلد21، شماره 4: 620-630.
زالی، ح.، ط.، حسنلو، ا.، سفالیان، ع.، اصغری و م. زین العابدین. 1395. اثر تنش خشکی بر پارامترهای فیزیولوژیکی و تجمع اسیدهای آمینه در کلزا. پژوهشنامه اصلاح گیاهان زراعی، جلد8، شماره 18: 191-203.
ضیاء تباراحمدی، م.خ. و و.ن. بابائیان جلودار. 1381. رشد گیاه در اراضی بایر و شور. مازندران دانشگاه انتشارات. 407 ص.
فلاحی فر، ف.، ا.، مصلح آرانی، آ.، تابنده ساروی و ح. دشتی. 1396. بررسی تنوع رنگدانه ای، پرولین، قندهای محلول و محتوای یونی در سه جمعیت سیاه تاغ (Haloxylon ammodendron). مهندسی اکوسیستم بیابان، جلد6، شماره 14: 1-10.
نایینی، م.، ح.، لسانی خوش گفتارمنش، و م.ه. میرزاپور. 1383. اثر تنش شوری ناشی از کلرور سدیم بر غلظت و توزیع عناصر معدنی و قندهای محلول سه رقم تجاری انار. جلد 18، شماره1: 91-98.
Abd El-Samad H.M., and MA.K, Shaddad, N, Barakat. 2011. Improvement of plants salt tolerance by exogenous application of amino acids. J. Med. Plant Res. 5: 5692-5699.
Baki, G. A. E., Siefritz, F., Man, H. M., Weiner, H., Kaldenhoff, R., and W. M. Kaiser. 2000. Nitrate reductase in Zea mays L. under salinity. Plant, Cell Environ. 23(5): 515-521.
Çelik, Ö. And Ç. Atak, 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turk. J. Biol. 36(3): 339-356.
Chapman, H. D. and P. F. Part. 1961. Method of analysis for soils, plants and waters. University of California. Division of Agriculture Sciences. Pp.309.
De Lacerda, C. F., J., CambraiaOliva, and H. A, Ruiz. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ. Exp. Bot. 54(1):69-76.
Eaton, S. V. 1941. Influence of sulphur deficiency on metabolism of the sunflower. Bot. Gaz. (Chicago). 102(3): 536-556.
Gregory, F. G., and P. K. Sen. 1937. Physiological studies in plant nutrition: VI. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. Bot. (Oxford, U. K.). 1(3): 521-561.
Hawkesford, M., W., Horst, T., Kichey, H., Lambers, J., Schjoerring, I. S., Møller, and P. White. 2012. Functions of macronutrients. In Marschner's Mineral Nutrition of Higher Plants (Third Edition) (pp. 135-189).
Hoshida H, Y, Tanaka Hibino, Y, A, Hayashi Tanaka, T, Takabe .2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol. Biol. 43: 103-111.
Humaira, M., I. shoaib, A., Farkhunda and A. Rafiq. 1995. Studies on growth and salt regulation in some halophytes as influenced by edaphic and climatic conditions. Pak. J. Bot. 27 (1): 151-163.
Joshi, A. J., and E. R. R. Iyengar. 1987. Effects of seawater salinity on free amino acids and mineral ions inSuaeda nudiflora Moq. Proceedings: Plant Sciences. 97(4): 309-314.
Joshi, A. J., and E. R. R. Iyengar. 1987. Effects of seawater salinity on free amino acids and mineral ions inSuaeda nudiflora Moq. Proceedings: Plant Sciences. 97(4): 309-314.
Kachout, S. S., A. B., Mansoura, K. J., Hamza, J. C., Leclerc, M. N., Rejeb and Z. Ouerghi. 2011. Leaf–water relations and ion concentrations of the halophyte Atriplex hortensis in response to salinity and water stress. Acta Physiol. Plant. 33(2): 335-342.
Kawasaki, S. and C. Borchert. 2001. Gene experession profiles during the initial phase of salt stress in Rice. The Plant Cell 13: 889-905.
Khan, M. A., I. A., Ungar, and A. Showalter. 2000. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann. Bot. (Oxford, U. K.). 85(2): 225-232.
Medh, M.T. 2002. Comparative study on growth, yield and nutritive value for some forage plants grown under different levels of salinity. PhD Thesis, Faculty of Science, Botany Department, Cairo University, Egypt.
Moran-Palacio, E. F., O., Tortoledo-Ortiz, G. A., Yañez-Farias, L. A., Zamora-Álvarez, N. A., Stephens-Camacho, J. G., Soñanez-Organis,... and J. A. Rosas-Rodríguez. 2014. Determination of amino acids in medicinal plants from Southern Sonora, Mexico. Trop. J. Pharm. Res. 13(4): 601-606.
Muñoz-Bertomeu, J., A. D., Anoman, M., Flores-Tornero, W., Toujani, S., Rosa-Téllez, A. R., Fernie, and R. Ros. 2013. The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis. Plant Signaling Behav. 8(11): 27104.
Rao, V. K., A. C., Rathore, and H. K. Singh. 2009. Screening of aonla (Emblica officinalis Gaertn.) cultivars for leaf chlorophyll and amino acid under different sodicity and salinity levels. Indian Journal of Soil Conservation, 37(3): 193-196.
Richards, F. J., and W. G. Templeman. 1936. Physiological studies in plant nutrition. IV. Nitrogen metabolism in relation to nutrient deficiency and age in leaves of barley. Ann. Bot. 50(198): 367-402.
Ros, R., J., Muñoz-Bertomeu, and S. Krueger. 2014. Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci. 19(9): 564-569.
Ryan, J., G., Estefan, and A. Rashid. 2007. Soil and plant analysis laboratory manual. ICARDA.
Sairam, R. K. and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86: 407 – 421.
Sakr, M, N, El-Sarkassy and M. Fuller. 2012. Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agron. Sustain. Dev.: 1-8.
Salma, I., D., Messedi, T., Ghnaya, A. Savoure, and C. Adbelly. 2006. Effect of water deficit on growth & proline metabolism in Sesuvium portulacastrum. Environmental and Exprimental Botany, 56: 231-238
Sanchez, F. J., E. F. D. Ander, J. L. Tenorio and L. Ayerbe. 2004. Growth of epicotyls turgor mainatenance and osmotic adjustment in pea plant (Pisum sativum L.) subjected to water stress. Field Crops Res. 86: 81-90.
Shabala, S. 2000. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell Environ. 23(8): 825-837.
Thakur P, and V. Rai 1985. Exogenously supplied amino acids and water deficits in Zea mays cultivars. Biol. Plant. 27: 458-461.
Verma, S. S., R. S., Verma, S. K., Verma, A. L., Yadav, and A. K. Verma. 2018. Impact of salt stress on plant establishment, chlorophyll and total free amino acid content of ber (Zizyphus mauritiana Lamk.) cultivars. J. Pharmacogn. Phytochem. 7(2): 556-559.
Waling, I., W., Van Vark, V.J.G., Houba, and J. Van der Lee. 1989. Soil and plant analysis, a series of syllabi, Part 7, Plant Analysis Procedures, Wageningen Agriculture University .
Wang, S., Ch. Wan, Ya. Wang, H. Chen, Z. H. Fu., Zhou, and R.E. Sosebee. 2004. The characteristics of Na±, K± & free proline distribution in several drought-resistant plants of the Alexa Desert, China. Arid Environ, 56: 525-539.
Yamaguchi-Shinozaki, K., K.M. Kasuga, and Q. Liu. 2002. Biological mechanisms of drought stress response. JIRCAS Japan Inter. Res. Center for Agricc. Sci., Working Reports PP: 1-8.
Yamamoto, Y. 2001. Quality control of photosystem II. Plant Cell Physiology, 42: 121–128.
_||_