حل شبه تحلیلی معادله دیفرانسیل فازی پینلیو
محورهای موضوعی : آمارمحمد ادبی تبار فیروزجاه 1 , علی اصغر حسین زاده 2 , بهرام عاقلی 3 , سمانه محمدزاده فر 4
1 - گروه ریاضی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران
2 - گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
3 - گروه ریاضی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران
4 - گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
کلید واژه: Tammy and Ansari Method (TAM), Painleve Differential Equation, Fuzzy number,
چکیده مقاله :
در این مقاله معادله دیفرانسیل پینلیو نوع اول را در نظر می گیریم که متغیر و ضرایب موجود حقیقی ولی مقادیر شرایط مرزی معلوم و عدد فازی هستند. هدف محاسبه جواب تقریبی برای آن می باشد. با توجه به فازی بودن شرایط مرزی بدیهی است که تابع جواب تقریبی باید یک تابع فازی باشد. برای این منظور ابتدا با استفاده از اعمال حسابی روی داده های فازی با سه مولفه شاخص مرکزی، ابهام چپ و ابهام راست، معادله دیفرانسیل پینلیو را به سه دستگاه معادلات دیفرانسیل (شاخص مرکزی، ابهام چپ و ابهام راست) با داده های دقیق تبدیل می کنیم . در ادامه با استفاده از روش تمیمی و انصاری (TAM) ، جواب تقریبی هر یک از سه دستگاه معادلات دیفرانسیل تبدیل شده را محاسبه و به جواب تقریبی فازی از معادله دیفرانسیل پینلیو می رسیم. در پایان با ارائه یک مثال، مناسب بودن روش را با محاسبه خطا و همگرایی با یافتن جواب تقریبی نشان می دهیم.
In this paper, we consider the first-order Painleve differential equation, which variables and coefficients are real but are known boundary conditions and fuzzy numbers. The goal is to calculate the approximate answer for it. Given the boundary conditions fuzzy, it is obvious that the approximate answer function must be a fuzzy function. For this purpose, first, by applying arithmetic on fuzzy data with three components of central index, left ambiguity and right ambiguity, it converts Painleve differential equation into three sets of differential equations (central index, left ambiguity and right ambiguity) with accurate data. do . Then, using the Tammy and Ansari (TAM) method, we calculate the approximate solution of each of the three transformed differential equations and arrive at the fuzzy approximate solution of the Painleve differential equation. Finally, by giving an example, we show the suitability of the method by calculating the error and convergence by finding the approximate solution.
[1] Painlevé, P. (1900). Mémoire sur les équations différentielles dont l'intégrale générale est uniforme. Bulletin de la Société Mathématique de France, 28, 201-261.
[2] Painlevé, P. (1902). Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme. Acta mathematica, 25, 1-85.
[3] Tracy, C.A. and Widom, H., Painleve´ Functions in Statistical Physics, Publ. Res. Inst. Math. Sci., 2011, vol. 47, iss. 1, pp. 361–374.
[4] Rajeev, S.G., Exact Solution of the Landau–Lifshitz Equations for a Radiating Charged Particle in the Coulomb Potential, Ann. Phys., 2008, vol. 323, iss. 11, pp. 2654–2661.
[5] Kudryashov, N.A., Analytical Theory of Nonlinear Differential Equations, 2nd ed., Moscow: Institute of Computer Investigations, 2004.
[6] Lukashevich, N.A. and Gromak, V.I., Analytical Properties of Solutions to Painleve´ Equations, Moscow: Moscow Univ., 1990.
[7] Golubev, V.V., Lectures on Analytical Theory of Differential Equations, Moscow: GITTL, 1941.
[8] Conte, R., The painlevé Approach to Nonlinear Ordinary Differential Equations, in The Painleve´ Property. One Century Later, Springer, 1999, pp. 77–180.
[9] P.A. Clarkson, Painlevé Equations – Nonlinear Special Functions, Lecture Notes in Mathematics, 1883, Springer, Berlin, 2006.
[10] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
[11] S.-Y. lee, R. Teodorescu, P. Wiegmann, Viscous shocks in Hele-Shaw flowand stokes phenomena of Painlevé I transcendent, Physica D (2011),http:// dx.doi.org/10.1016/j.physd.2010-09.017.
[12] Haberman R (1979) Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J Appl Math 37:69–106.
[13] Fokas AS, Its AR, Kitaev AV (1991) Discrete painlevé equations and their appearance in quantum gravity. Comm Math Phys 142(2):313–344.
[14] Paniak LD, Szabo RJ (2001) Fermionic quantum gravity. Nucl Phys B 593:671–725.
[15] Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Studies in Applied Mathematics 4, Philadelphia.
[16] Turcotte DL, Spence DA, Bau HH (1982) Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int J Heat Mass Transfer 25(5):699-706.
[17] Sierra-Porta, D., & Nunez, L. A. (2017). On the polynomial solution of the first Painlevé equation. Int. J. of Applied Mathematical Research, 6(1), 34-38.
[18] Raja, M. A. Z., Khan, J. A., & Qureshi, I. M. (2013). Numerical treatment for Painlevé equation i using neural networks and stochastic solvers. In Innovations in intelligent machines-3 (pp. 103-117). Springer, Berlin, Heidelberg.
[19] Raja, M. A. Z., Khan, J. A., Siddiqui, A. M., Behloul, D., Haroon, T., & Samar, R. (2015). Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Applied Soft Computing, 26, 244-256.
[20] Al-Jawary, M. A., Adwan, M. I., & Radhi, G. H. (2018). Three iterative methods for solving second order nonlinear ODEs arising in physics. Journal of King Saud University-Science.
[21] Glowinski, R., & Quaini, A. (2014). On the numerical solution to a nonlinear wave equation associated with the first painlevé equation: an operator-splitting approach. In Partial differential equations: theory, control and approximation (pp. 243-264). Springer, Berlin, Heidelberg.
[22] Hesameddini, E., & Peyrovi, A. (2009). The use of variational iteration method and homotopy perturbation method for Painlevé equation I. Applied Mathematical Sciences, 3(37-40), 1861-1871.
[23] Yin, F. K., Han, W. Y., Song, J. Q., & Cao, X. Q. (2013). Legendre wavelets-Picard iteration method for solution of nonlinear initial value problems. International Journal of Applied Physics and Mathematics, 3(2), 127.
[24] Erfanian, M., & Mansoori, A. (2019). Rationalized Haar wavelet bases to approximate the solution of the first Painlevé equations. Journal of Mathematical Modeling, 7(1), 107-116.
[25] SAKKA, A., & SULAYH, A. (2019). On Taylor Differential Transform Method for the first painlevé equations. Jordan Journal of Mathematics and Statistics (JJMS), 12(3), 391-408.
[26] Fornberg, B., & Weideman, J. A. C. (2011). A numerical methodology for the Painlevé equations. Journal of Computational Physics, 230(15), 5957-5973.
[27] Dai, D., & Zhang, L. (2010). On tronquee solutions of the first Painlevé hierarchy. Journal of Mathematical Analysis and Applications, 368(2), 393-399.
[28] Joshi, N., & Kitaev, A. V. (2001). On Boutroux’s tritronquee solutions of the first Painlevé equation. Studies in Applied Mathematics, 107(3), 253-291.
[29] Novokshenov, V. Y. (2009). Pade approximations for Painlevé I and II transcendents. Theoretical and Mathematical Physics, 159(3), 853-862.
[30] Chang, S. S., & Zadeh, L. A. (1996). On fuzzy mapping and control. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, 180-184.
[31] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
[32] Ma, M., Friedman, M., & Kandel, A. (1999). A new fuzzy arithmetic. Fuzzy sets and systems, 108(1), 83-90.
[33] Ahmadian, A., Salahshour, S., Chan, C. S., & Baleanu, D. (2018). Numerical solutions of fuzzy differential equations by an efficient Runge–Kutta method with generalized differentiability. Fuzzy Sets and Systems, 331, 47-67.
[34] Razvarz, S., Jafari, R., & Yu, W. (2018). Numerical solution of fuzzy differential equations with Z-numbers using fuzzy Sumudu transforms. Adv. Sci. Technol. Eng. Syst. J.(ASTESJ), 3, 66-75.
[35] Jameel, A. F., Saaban, A., Altaie, S. A., Anakira, N. R., Alomari, A. K., & Ahmad, N. (2018). Solving first order nonlinear fuzzy differential equations using Optimal Homotopy Asymptotic Method. International Journal of Pure and Applied Mathematics, 118(1), 49-64.
[36] Bertone, A. M., Jafelice, R. M., de Barros, L. C., & Gomide, F. (2018). Granular approximation of solutions of partial differential equations with fuzzy parameter. Granular Computing, 3(1),1-7.
[37] da Costa, T. M., Chalco-Cano, Y., Lodwick, W. A., & Silva, G. N. (2018). A new approach to linear interval differential equations as a first step toward solving fuzzy differential. Fuzzy Sets and Systems, 347, 129-141.
[38] Khastan, A., & Rodríguez-López, R. (2015). On periodic solutions to first order linear fuzzy differential equations under differential inclusions’ approach. Information Sciences, 322, 31-50.
[39] Ahmadian, A., Suleiman, M., Salahshour, S., & Baleanu, D. (2013). A Jacobi operational matrix for solving a fuzzy linear fractional differential equation. Advances in Difference Equations, 2013(1), 104.
[40] Allahviranloo, T., & Ghanbari, B. (2020). On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach. Chaos, Solitons & Fractals, 130, 109397.
[41] الهویرنلو, توفیق, احمدی, نازنین, احمدی, الهام. (1395). جواب تقریبی معادلات دیفرانسیل فازی مرتبه اول تحت مشتق تعمیم یافته پژوهشهای نوین در ریاضی, 3(9), 33-44.
[42] پرندین, نورالدین. (1398). حل عددی معادلات دیفرانسیل فازی مرتبه n با استفاده از روش آدامز- بشفورث. پژوهش های نوین در ریاضی, 5(17), 85-94.
[43] درزی, رحمت, عاقلی, بهرام. (1396). یک روش تحلیلی بهینه برای حل مسائل مقدار مرزی غیرخطی بر پایه روش تغییر پارامتر پژوهشهای نوین در ریاضی, 3(12), 55-70.
[44] نوروزی, خدیجه, آلعمرانی نژاد, سید محمد علی, سلیمانی, مهدی, فرنام, بهناز. (1396). محاسبه ترازهای انرژی معادلات شرودینگر خطی به روش سینک. پژوهشهای نوین در ریاضی 3(11), .81-90
[45] بهروزی فر, محمود. (1398). ارائه دو مدل برای تحلیل عددی جواب معادلات دیفرانسیل-انتگرال کسری و مقایسه آنها. پژوهشهای نوین در ریاضی, 5 (20), 31-48 .
[46] عبادی, محمد علی, هاشمیزاده, الهام السادات, رفاهی شیخانی, امیرحسین. (1348). حل عددی معادلات دیفرانسیل معمولی منفرد غیرخطی حاصل شده در بیولوژی، ازطریق ماتریس عملیاتی چند جملهایهای زرنیکه شعاعی. پژوهشهای نوین در ریاضی, 5 (19), 139-150.