حل عددی و شبیهسازی معادلات رندم با فرایندهای وینر و پواسون مرکب
محورهای موضوعی : آمارعارفه مومنی 1 , مینو کامرانی 2
1 - گروه ریاضی کاربردی، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران
2 - گروه ریاضی کاربردی، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران
کلید واژه: Stochastic Taylor method, Random affine equations, Compound poisson processes, Random differential equations, Order of convergence,
چکیده مقاله :
معادلات دیفرانسیل معمولی که شامل فرایند تصادفی در میدان برداریشان هستند کاربردهای فراوانی در علوم و مهندسی دارند. هدف اصلی این مقاله بررسی روشهای عددی برای حل معادلات دیفرانسیل معمولی که شامل فرایند تصادفی بر پایه نویز وینر و پواسون مرکب با بعد بزرگتر از یک هستند میباشد. معادلات دیفرانسیل با یک پخش ایتو که جوابی از معادله دیفرانسیل تصادفی ایتو است مورد بررسی قرار میگیرد. با توجه به اینکه برای حل عددی این دسته از معادلات در روشهای مبتنی بر بسط تیلور به شبیهسازی انتگرالهای دوگانه تصادفی نیاز داریم، نحوه شبیهسازی این انتگرالها بیان میشود. در ادامه به بررسی روشهای عددی تکگامی و چندگامی برای حل معادلات رندم آفین پرداخته میشود، سپس حل عددی این دسته از معادلات با دو دسته نویز مختلف وینر و پواسون مرکب بیان می شود. بدین منظور روشهایی برای شبیهسازی انتگرالهای تصادفی با هر دو دسته نویز مختلف ارائه میشود و در انتها با ذکر چند مثال عددی به پیاده سازی روشهای ارائه شده پرداخته میشود.
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differential equation will be considered. Because for the numerical solution of these equations we need the simulation of stochastic double integrals, we explain the simulation of these integrals in more details. Also one-step and multi steps methods for the solution of affine random ordinary equations (RODEs) which are an important class of RODEs will be considered. The numerical solution of these equations with Wiener and Compound Poisson processes will be established. Two methods for simulation of the double integrals will be explained, and some numerical examples are provided to confirm the theoretical results numerically.
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin (1997).
[2] Y. Asai, Y. Herrmann, P. E. Kloeden, Stable integrations of stiff random ordinary differential equations, Stochastic Analysis and Applications, 31: 293-313.
[3] Y. Asai, P. E. Kloeden, Multi- step methods for random ODEs driven by Itô diffusions, Computational and Applied Mathematics, 294: 210-224 (2016).
[4] Y. Asai, P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations, Communications in Applied Analysis, 17: 521-528 (2013).
[5]. Y. Asai, P.E. Kloeden, Numerical schemes for random ODEs with affine noise, Numerical Algorithms, 𝟽𝟸: 𝟷𝟻𝟻-𝟷𝟽𝟷 (𝟸𝟶𝟷𝟼).
[6] H. Bunke, Gewo ̈hnliche Differential gleichungen mit zufa ̈lligen Parametern, Akademie- Verlag, Berlin (1972).
[7] F. B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions Modeling, Analysis and Computation, SIAM, Philadelphia (2007).
[8] A. Jentzen, P.E. Kloeden, Taylor Approximations of stochastics partial differential equations, CBMS Lecture series, SIAM, Philadelphia (2011).
[9] A. Jentzen, P.E. Kloeden, Taylor schemes for random ordinary differential equations, BIT Numerical Mathematics, 49: 113-140 (2009) .
[10] A. Jentzen, P.E. Kloeden, Pathwise convergence higher order numerical schemes for random ordinary differential equations, Proceedings of the Royal Society A, 463: 2929-2944 (2007) .
[11] P. E. Kloeden, A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations, LMS Journal of Computation and Mathematics, 10: 235-253 (2007) .
[12] P. E. Kloeden, P, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin (1992).
[13] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin (1992).
[14] B. Verd, A. Crombach, J. Jaeger, Classification of transient in a time-dependent toggle switch model, BMC Systems Biology, 8(43): 1-19 (2014).