بررسی اپیدمیولوژی مولکولی و مقاومت های آنتی بیوتیکی سویه های اسینتوباکتربامانی جدا شده از بیمارستان نمازی شیراز با روش آنالیز اصلاح شده AFLP
محورهای موضوعی : میکروب شناسی مولکولینجمه علایی 1 * , عباس بهادر 2 , ناصر هرزندی 3
1 - کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد کرج، دانشکده علوم پایه، گروه میکروبیولوژی
2 - استادیار، دانشگاه علوم پزشکی تهران، دانشکده پزشکی، گروه میکروبیولوژی
3 - استادیار، دانشگاه آزاد اسلامی، واحد کرج، دانشکده علوم پایه، گروه میکروبیولوژی
کلید واژه: AFLP, آنتی بیودندروگرام, اسینتوباکتر بامانی,
چکیده مقاله :
سابقه و هدف: امروزه اسینتوباکتر بامانی به دلیل افزایش سریع مقاومت به طیف گسترده ای از آنتی بیوتیک ها و نیز ایجاد عفونت های مشهور بیمارستانی با میزان مرگو میر بالا، مشکلات زیادی را در سیستم درمان ایجاد نموده است. هدف از این پژوهش، بررسی اپیدمیولوژیکی سویه های اسینتوباکتر بامانی جمع آوری شده از بیمارستان نمازی شیراز، به روش AFLP و تعیین سطح مقاومت آنتی بیوتیکی برای طراحی برنامه درمانی مناسب بود. مواد و روش ها: این پژوهش به صورت مقطعی - توصیفی بر روی سویه های اسینتوباکتر بامانی به دست آمده از 7 واحد مختلف مراقبت های ویژه در بیمارستان نمازی شیراز انجام شد. تمامی جدایه های احتمالی به وسیله کیت های NE20API شناسایی شدند. مقاومت دارویی سویه ها نسبت به 20 آنتی بیوتیک مختلف با روش میکروبراث دایلوشن بررسی گردید. به منظور طبقه بندی فنوتیپی سویه ها با استفاده از نتایج به دست آمده، آنتی بیودندروگرام توسط نرم افزار SPSS طراحی شد. سپس آنالیز AFLP با هضم DNA سویه ها به وسیله آنزیم های MboI و MseI ، اتصال آداپتورهای طراحی شده، تکثیر اولیه و تکثیر انتخابی توسط پرایمرهای اختصاصی انجام گردید. یافته ها: در این مطالعه 54% (46 مورد) از سویه های اسینتوباکتر بامانی از نوع MDR، 43% (36 مورد) از نوع XDR و 2% (2 مورد) از نوع PDR بودند. الگوی مقاومت آنتی بیوتیکی حضور برجسته سویه های مقاوم به ایمی پنم (51%) و مروپنم (76%) را نشان داد. هچنین نتایج AFLP نشان دهنده سه خوشه اصلی (1، 3 و 4) بود که با شیوع عفونت های مختلف بیمارستانی ارتباط داشت. نتیجه گیری: نتایج این پژوهش نشان داد که تکثیر بالای سویه های اسینتوباکتر بامانی و انتقال مقطعی سویه ها در بین بخش های مختلف بیمارستان نمازی شیراز، موجب افزایش مقاومت دارویی و بروز شیوع های گسترده در بیمارستان شده است. بنابراین توجه به برنامه های مراقبتی متناسب با داده های به دست آمده از تحقیق اخیر در کنترل عفونت و درمان ضروری می باشد.
Background and Objectives: Due to rapid resistance of Acinetobacter baumannii to broad-spectrum antibiotics and to cause nosocomial infections with high mortality rates, this bacterium has associated with many therapeutic problems. This study aimed to investigate epidemiologic strains pf Acinetobacter isolates in Sahid Namazi hospital, Shiraz- Iran, based on AFLP method and to determine their antibiotic resistance levels in order to design surveillance program and effective treatment. Materials and Methods: This descriptive study were performed on the Acinetobacter baumannii strains isolated from seven different intensive Care Units of Sahid Namazi hospital. All isolates were identified with the API20NE kits. Drug resistances of the strains were determined based on broth microdilution methods. For purpose of the phenotypic typing by obtained results, the antibiodendrogram was designed with SPSS statistical software. Next, AFLP analysis was performed with DNA digestion by MboI and MseI restriction enzymes, ligation of synthetic adapters, Pre-amplification and sensitive amplification by specific primers. Results: In present research, 54% (46 cases) of Acinetobacter baumannii strains were MDR, while 43% (36 cases) belonged to XDR and only 2% (2 cases) was identified as PDR. The antibiotic susceptibility pattern show prominent presence of imipenem resistance (51%) and meropenem resistance (76%) strains. In addition, the AFLP results revealed that three main clusters (1, 3, and 4) have been associated with several outbreaks of nosocomial infections. Conclusion: Based on the results, rapid growth of Acinetobacter baumannii and their cross-transmission among different wards of Sahid Namazi hospital have led to increase of antibiotic resistance rate and their prevalence in the hospital. Therefore, results of this study emphasizes surveillance programs for infection control and to eradication therapy.
1. Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008; 46(8): 1254-1263.
2. Jung JY, Park MS, Kim SE, Park BH, Son JY, Kim EY, Lim JE, Lee SK, Lee SH, Lee KJ. Risk factors for multi-drug resistant Acinetobacter baumannii bacteremia in patients with colonization in the intensive care unit. BMC Infect Dis. 2010; 10: 228.
3. Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. J Microbes Environ. 2011; 26(2): 101-112.
4. Irfan S, Idrees F, Mehraj V, Habib F, Adil S, Hasan R. Emergence of Carbapenem resistant Gram negative and vancomycin resistant Gram positive organisms in bacteremic isolates of febrile neutropenic patients: a descriptive study. BMC Infect Dis. 2008; 8: 80.
5.Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 2006; 43(Suppl 2): S49-S56.
6. Jean SS, Hsueh PR, Lee WS, Chang HT, Chou MY, Chen IS, Wang JH, Lin CF, Shyr JM, Ko WC. Nationwide surveillance of antimicrobial resistance among non-fermentative Gram-negative bacteria in Intensive Care Units in Taiwan: SMART programme data 2005. Int J Antimicrob Agents. 2009; 33(3): 266-2671.
7.Sopirala MM, Mangino JE, Gebreyes WA, Biller B, Bannerman T, Balada-Llasat J-M, Pancholi P. Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2010; 54(11): 4678-4683
8.Livermore D. The impact of carbapenemases on antimicrobial development and therapy. Curr Opin Investig Drugs. 2002; 3(2): 218- 224.
9.Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A. Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J Infect Dev Ctries. 2009; 3(5):335-341.
10.Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Zabeau M, Kersters K. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. J Microbiol. 1996; 142(7): 1881-1893.
11.Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M. AFLP: a new technique for DNA fingerprinting. J Nucleic Acids Research. 1995; 23(21): 4407-4414.
12.Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first Informational Supplement M100-S21. Wayne, PA, USA: CLSI. 2011.
13.Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, Harbarth S, Hindler JF, Kahlmeter G, Olsson‐Liljequist B. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. J Clin Microbiol Infection. 2012; 18(3): 268-281.
14.Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006; 55(12): 1619-1629.
15. Feizabadi M, Fathollahzadeh B, Taherikalani M, Rasoolinejad M, Sadeghifard N, Aligholi M, Soroush S, Mohammadi-Yegane S. Antimicrobial susceptibility patterns and distribution of blaOXA genes among Acinetobacter spp. isolated from patients at Tehran hospitals. Jpn J Infect Dis. 2008; 61(4): 274-278.
16. Asadollahi K, Alizadeh E, Akbari M, Taherikalani M, Niakan M, Maleki A, Asadollahi P, Soroush S, Feizabadi M-M, Emaneini M. The role of blaoxa-like carbapenemase and their insertion sequences (ISS) in the induction of resistance against carbapenem antibiotics among Acinetobacter baumannii isolates in Tehran hospitals. Roum Arch Microbiol Immunol. 2011; 51: 153.
17. Akbari M, Niakan M, Taherikalani M, Feizabadi M-M, Azadi N-A, Soroush S, Emaneini M, Abdolkarimi A, Maleki A, Hematian A. Rapid identification of Iranian Acinetobacter baumannii strains by single PCR assay using bla oxa-51-like carbapenemase and evaluation of the antimicrobial resistance profiles of the isolates. Acta Microbiol Immunol Hung. 2010; 57(2): 87-94.
18. Asadollahi P, Akbari M, Soroush S, Taherikalani M, Asadollahi K, Sayehmiri K, Maleki A, Maleki M-H, Karimi P, Emaneini M. Antimicrobial resistance patterns and their encoding genes among Acinetobacter baumannii strains isolated from burned patients. Burns. 2012. 38(8): 1198-1203.
19. Peymani A, Nahaei M-R, Farajnia S, Hasani A, Mirsalehian A, Sohrabi N, Abbasi L. High prevalence of metallo-b-lactamase-producing Acinetobacter baumannii in a Teaching Hospital in Tabriz, Iran. Jpn J Infect Dis. 2011; 64: 69-71.
20. Sohrabi N, Farajnia S, Akhi MT, Nahaei MR, Naghili B, Peymani A, Amiri Z, Ahangarzadeh-Rezaee M, Saeedi N. Prevalence of OXA-type β-lactamases among Acinetobacter baumannii isolates from Northwest of Iran. Microbial Drug Resistance. 2012; 18(4): 385-389.
21. Li J, Nation RL, Owen RJ, Wong S, Spelman D, Franklin C. Antibiograms of multidrug-resistant clinical Acinetobacter baumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Clin Infect Dis. 2007; 45(5): 594-598.
22.Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis. 2006; 43(Suppl 2): S43-S8.
23. Neonakis IK, Spandidos DA, Petinaki E. Confronting multidrug-resistant Acinetobacter baumannii: a review. Int J Antimicrob Agents. 2011; 37(2): 102-109.
24. Liang W, Liu Xf, Huang J, Zhu DM, Li J, Zhang J. Activities of colistin-and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients. BMC Infect Dis. 2011; 11:109.
25.Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents. 2012; 39(2):105-114.
26.Tutuncu EE, Kuscu F, Gurbuz Y, Ozturk B, Haykir A, Sencan I. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis. Int J Infect Dis. 2010; 14 (Suppl 3): e224-6.
27.Falagas ME, Rizos M, Bliziotis IA, Rellos K, Kasiakou SK, Michalopoulos A. Toxicity after prolonged (more than four weeks) administration of intravenous colistin. BMC Infect Dis. 2005; 5: 1.
28.Lengerke C, Haap M, Mayer F, Kanz L, Kinzig M, Schumacher U, Sörgel F, Riessen R. Low tigecycline concentrations in the cerebrospinal fluid of a neutropenic patient with inflamed meninges. Antimicrob Agents Chemother. 2011; 55(1): 449-450.
29.Gounden R, Bamford C, van Zyl-Smit R, Cohen K, Maartens G. Safety and effectiveness of colistin compared with tobramycin for multi-drug resistant Acinetobacter baumannii infections. BMC Infect Dis. 2009; 9: 26.
30.Olive DM, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol. 1999; 37(6): 1661-1669.
31. Nemec A, Křížová L, Maixnerová M, Diancourt L, van der Reijden TJ, Brisse S, van den Broek P, Dijkshoorn L. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother. 2008; 62(3): 484-489.
32. Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLOS Genet. 2006; 2(1):e7.
33. Gould I. A review of the role of antibiotic policies in the control of antibiotic resistance. J Antimicrob Chemother. 1999; 43(4): 459-465.
34.Bergogne-Berezin E, Towner K. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol. 1996; 9(2): 148-165.
35.Fournier PE, Richet H, Weinstein RA. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006; 42(5): 692-699.