جداسازی، شناسایی و بررسی ارتباط بین مقاومت چند دارویی (MDR) و حضور ژنهای mexC، exoS و plcH در جدایه های بالینی P. aeruginosa
محورهای موضوعی : میکروب شناسی مولکولیلیلی علی عبدالحسینات 1 , بیتا بهبودیان 2 , سمانه دولت آبادی 3 , الهه ودایع خیری 4
1 - گروه زیست شناسی ، دانشکده علوم و فناوری های همگرا، واحد علوم تحقیقات، تهران، ایران
2 - گروه کشاورزی، واحد کاشمر، دانشگاه آزاد اسلامی کاشمر، ایران
3 - گروه میکروبیولوژی، واحد نیشابور، دانشگاه آزاد اسلامی نیشابور، ایران
4 - گروه زیست شناسی ، دانشکده علوم و فناوری های همگرا، واحد علوم تحقیقات، تهران، ایران
کلید واژه: سودوموناس آئروژینوزا, مقاوت دارویی, فسفولیپازC, اگزوتوکسین, mexC,
چکیده مقاله :
سودوموناس ائروژینوزا باعث عفونتهای جدی بیمارستانی میشود. شیوع سویههای مقاوم به چند دارو گزینههای درمانی را کاهش و به طور قابل توجهی نرخ عوارض را افزایش میدهد. به دلیل اهمیت این موضوع، آگاهی از مکانیسمهای بیماریزایی و مقاومتهای آنتیبیوتیکی ضروری به نظر میرسد. هدف از این مطالعه ارزیابی عوامل مقاوم به دارو در سودوموناس ائروژینوزا از طریق بیان mexC، exoS و plcH میباشد. ابتدا 150 نمونه بالینی بیماران بستری جمع آوری شد. شناسایی جدایههای P. aeruginosa با آزمایشهاي بیوشیمیایی انجام گردید. فنوتیپ حساسيت آنتيبیوتیکي جدایههاي P. aeruginosa با روش دیسک دیفیوژن انجام شد. برای بررسی حضور ژنهای mexC، exoS و plcH در جدایههای مقاوم، تکنیک PCR استفاده شد. نتایج نشان داد که 66 % نمونهها آلوده به P. aeruginosa بودند و بیشترین فراوانی آلودگی مربوط به نمونههای خون بود. همچنین فراوانی مقاومت نسبت به آنتیبیوتیک سفکسیم بیشترین و 86 درصد بود. کمترین درصد مقاومت نسبت به ایمیپنم با 4۲ درصد بود. 60درصد جدایهها فنوتیپ MDR داشتند. بررسی PCR نشان داد که 90 درصد جدایههای مقاوم حامل ژن plcH و75 درصد دارایexoS میباشند. با توجه به افزایش مقاومت به آنتی بیوتیکها در عفونتهاي بیمارستانی از جمله سودوموناس ائروژینوزا لازم است اقدامات فوري در شناسایی به موقع و درمان قطعی با آنتی بیوتیکهاي مناسب انجام شود.
Pseudomonas aeruginosa causes serious hospital acquired infections. The prevalence of multidrug-resistant strains reduces treatment options and significantly increases complication rates. Due to the importance of this topic, knowledge of pathogenic mechanisms and antibiotic resistance seems essential. The aim of this study is to evaluate drug resistance factors in Pseudomonas aeruginosa through the expression of mexC, exoS and plcH. First, 150 clinical samples of hospitalized patients were collected. P. aeruginosa isolates were identified by biochemical tests. Antibiotic sensitivity phenotype of P. aeruginosa isolates was done by disk diffusion method. PCR technique was used to check the presence of mexC, exoS and plcH genes in resistant isolates. The results showed that 66% of the samples were infected with P. aeruginosa, and the highest frequency of contamination was related to blood samples. According to the obtained results, the frequency of resistance to cefixime antibiotic was the highest and 86%. The lowest percentage of resistance to imipenem was 42%, 60% of isolates had MDR phenotype. PCR analysis showed that 90% of tested resistant isolates carry the plcH gene and 75% have exoS. Due to the increase of resistance to antibiotics in hospital acquired infections, including Pseudomonas aeruginosa, it is necessary to take immediate measures for timely identification and definitive treatment with appropriate antibiotics.
1. Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. 2014;4(January):1–8.
2. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ, et al. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa.
3. Maurice NM, Bedi B, Sadikot RT. TRANSLATIONAL REVIEW Pseudomonas aeruginosa Bio fi lms : Host Response and Clinical Implications in Lung Infections. 2018;58(4):428–39.
4. Costa E, Matos O De, Andriolo RB, Rodrigues YC, Valéria K, Lima B. Review Article Mortality in patients with multidrug-resistant Pseudomonas aeruginosa infections : a meta-analysis. 2018;51(4):415–20.
5. Inzana TJ. The many facets of lipooligosaccharide as a virulence factor for Histophilus somni. Curr Top Microbiol Immunol [Internet]. 2016 Apr 1 [cited 2024 Apr 14];396:131–48. Available from: https://link.springer.com/chapter/10.1007/82_2015_5020
6. Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant pseudomonas aeruginosa. Antibiotics. 2021;10(1):1–29.
7. Hilmarni. Uji Efek Teratogenik Infusa bunga Lawang (Illicium verum Hook.f) Pada Mencit Putih. Akad Farm Pray. 2019;4(1).
8. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):1–52.
9. Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. 2022;12(July):1–17.
10. Bogiel T, Depka D, Kruszewski S, Rutkowska A, Kanarek P, Rzepka M, et al. Comparison of Virulence-Factor-Encoding Genes and Genotype Distribution amongst Clinical Pseudomonas aeruginosa Strains. 2023;1–13.
11. Jarjees KK. Cellular and Molecular Biology. 2020;(6).
12. Hassuna NA, Mandour SA, Mohamed ES. Virulence Constitution of Multi-Drug-Resistant Pseudomonas aeruginosa in Upper Egypt Virulence Constitution of Multi-Drug-Resistant Pseudomonas aeruginosa in Upper Egypt. 2020;
13. Infections A. pathogens E ffl ux MexAB -Mediated Resistance in P . aeruginosa Isolated from Patients with Healthcare. 2020;1–13.
14. Alcalde-rico M, Olivares-pacheco J, Alvarez-ortega C, Olivares-pacheco J. Role of the Multidrug Resistance Efflux Pump MexCD-OprJ in the Pseudomonas aeruginosa Quorum Sensing Response. 2018;9(November):1–16.
15. Mohamed NA, Alrawy MH, Abdelrahman MM, Gad EM, Shafik NS. Molecular detection of efflux pump and virulence factors genes in Pseudomonas aeruginosa. Microbes Infect Dis. 2023;4(3):884–93.
16. Horna G, Amaro C, Palacios A, Guerra H, Ruiz J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep [Internet]. 2019;9(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-019-47303-4
17. Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet. 2014;5(3):125–34.
18. Noori HG, Tadjrobehkar O, Moazamian E. The effects of Tomatidine alkaloid on biofilm formation and the exprsssion of quorum sensing associated genes in Pseudomonas aeruginosa. 2023;16(2):119–31
19. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and metaanalysis. J Glob Infect Dis. 2018;10(4):212–7.
20. Peymani A, Farivar TN, Ghanbarlou MM, Najafipour R. Dissemination of Pseudomonas aeruginosa producing blaIMP-1 and blaVIM-1 in Qazvin and Alborz educational hospitals, Iran. Iran J Microbiol. 2015;7(6):302–9.
21. Gill J, Arora S, Khanna S, Kumar KVS. Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level Intensive Care Unit. J Glob Infect Dis. 2016;8(4):155–9.
22. Khan F, Khan A, Kazmi SU. Prevalence and susceptibility pattern of multi drug resistant clinical isolates of Pseudomonas aeruginosa in Karachi. Pakistan J Med Sci. 2014;30(5):951–4.
23. Suwantarat N, Carroll KC. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia. Antimicrob Resist Infect Control [Internet]. 2016;5(1):1–8. Available from: http://dx.doi.org/10.1186/s13756-016-0115-6
24. Aslani MM, Nikbin VS, Sharafi Z, Hashemipour M, Shahcheraghi F, Ebrahimipour GH. Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran J Microbiol. 2012;4(3):118–23.
25. Bogiel T, DeptuŁa A, Kwiecińska-Piróg J, Prazyńska M, Mikucka A, Gospodarek-Komkowska E. The prevalence of exoenzyme s gene in multidrug-sensitive and multidrug-resistant pseudomonas aeruginosa clinical strains. Polish J Microbiol. 2017;66(4):427–31.
26. Rezaei F, Saderi H, Boroumandi S, Faghihzadeh S. c r v i h o e f.
27. Dashtizadeh Y, Moattari A, Gorzin AA. Phenotypic and genetically evaluation of the prevalence of efflux pumps and antibiotic resistance in clinical isolates of Pseudomonas aeruginosa among burned patients admitted to Ghotbodin Shirazi Hospital. J Microb World. 2014;7(2):118–27.
28. Meyers DJ, Berk RS. Characterization of phospholipase C from Pseudomonas aeruginosa as a potent inflammatory agent. Infect Immun. 1990;58(3):659–66.
29. Hasan KA, Hussein AS, Mohammed TK. Detection of Lasb and Plch Genes in Pseudomonas Aeruginosa Isolated From Urinary Tract Infections by PCR Technique. Ann Rom Soc Cell Biol. 2021;25(6):123–34.
30. Ullah W, Qasim M, Rahman H, Jie Y, Muhammad N. Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes. J Chinese Med Assoc [Internet]. 2017;80(3):173–7. Available from: http://dx.doi.org/10.1016/j.jcma.2016.08.011
31. Saravi NM, Mousavi T. Multidrug-Resistant Virulence Genes in Isolates of Pseudomonas aeruginosa in Iranian Clinical Samples: A Review-Meta-Analysis. J Maz Univ Med Sci. 2022;32(215):176–88.