اولویتبندی تجهیزات بخش دیالیز بهمنظور ارتقای سطح اطمینان با استفاده از تصمیمگیری چندمعیاره فازی
محورهای موضوعی : مدیریت بازرگانی- بازرگانیفرشته اصغری قره لر 1 , منصور صوفی 2 , مهدی فدایی اشکیکی 3 , مهدی همایون فر 4
1 - دانشجوی دکتری گروه مدیریت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - استادیار گروه مدیریت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران (نویسنده مسئول)
3 - استادیار گروه مدیریت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
4 - استادیار گروه مدیریت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
کلید واژه: تصمیم¬گیری چندمعیاره فازی, تاپسیس توسعهیافته فازی, اولویتبندی, تجهیزات بخش دیالیز, نگهداری و تعمیرات (نت),
چکیده مقاله :
قابلیت اطمینان به درصد کامیابی تجهیزات در طول دوره فعالیت آنها باز می¬گردد. قابلیت اطمینان تجهیزات بیمارستانی پس از انتخاب و تهیه، در طول عمر فعالیت وابسته به نگهداری و بهره¬برداری مناسب است. هدف پژوهش حاضر ارائه مدلی کارآمد برای اولویت¬بندی تجهیزات بیمارستانی برای قرارگیری در برنامه نگهداری و تعمیرات است. چرا که یکی از مهمترین موارد مؤثر در حفظ قابلیت اطمینان تجهیزات نگهداری این تجهیزات در سطح عملکرد مناسب است. این پژوهش از منظر هدف کاربردی، روش جمعآوری اطلاعات پیمایشی و دلفی فازی است. تجزیهوتحلیل اطلاعات در مورد وزندهی شاخصها از طریق مقایسات زوجی و تجزیه تحلیل سلسلهمراتبی فازی و در اولویتبندی تجهیزات از طریق مدل تاپسیس بهبودیافته فازی صورت گرفته است. نتایج نشان می¬دهد اولویت تجهیزات بخش دیالیز به عنوان جامعه نمونه با توجه با شاخصهای اصلی ارزش، ماهیت، میزان و شرایط فعالیت تجهیز و نیز 9 زیر شاخص فرعی این شاخصهای اصلی، بدین شرح است. اولویت اول مربوط به یوپی¬اس، دوم ریورس اسمز و سوم دستگاه دیالیز.
Reliability refers to the percentage of equipment success during their operation period. Reliability of hospital equipment after selection and preparation depends on proper maintenance and operation throughout the life of the operation. The aim of the current research is to provide an efficient model for prioritizing hospital equipment for inclusion in the maintenance and repair program. Because one of the most important effective things in maintaining the reliability of the equipment is maintaining this equipment at the proper performance level. From the point of view of the practical purpose, this research is a fuzzy survey and Delphi data collection method. The analysis of information about the weighting of indicators has been done through pairwise comparisons and fuzzy hierarchical analysis, and in equipment prioritization through the fuzzy improved TOPSIS model. The results show that the priority of the equipment of the dialysis department as a sample community according to the main indicators of value, nature, amount and conditions of equipment activity, as well as 9 sub-indices of these main indicators, is as follows. The first priority is UPS, the second is reverse osmosis, and the third is dialysis.
- Aghasi Zadeh, Z. and Pouya, A. (2017), Evaluation of Different Strategies for Maintenance and Repair of Medical Equipment with System Simulation Approach, First National Conference of Iranian System Dynamics Society, Tehran, https://civilica.com/doc/730404
- Aghasizadeh, Z. Poya, A.R. (2015). Evaluation of different strategies for maintenance and repair of medical equipment with dynamic systems simulation approach. The first national conference of the Iranian Organization Dynamics Association. [In parsaian]
- Ahmed, R. Nasiri, F. Zayed, T. (2021). A novel Neutrosophic-based machine learning approach for maintenance prioritization in healthcare facilities. Journal of Building Engineering.Volume 42, 102480, pp.1-11.
- Alasfar, S.Alashavi, H. & others. (2023). Improving and maintaining quality of hemodialysis in areas affected by war: a call to action!. Kidney International 103, 817–820.
- Alavi, A. Akbari, A. Atai, M. Kia Deliri, H. (2010). Comparison of Fuzzy TOPSIS and Fuzzy AHP methods for selecting and planting indigenous plant species (case study: Sarchesheme copper mining area). Renewable Natural Resources Research, 2(3 (serial 5)), 46-56. [In parsaian]
- Arab Sorkhi Mishabi. M. (2018). A Review of Evaluation, Use and Maintenance Management of Medical Equipment. Fifth Annual Research Conference of Semnan University of Medical Sciences. Semnan. https://civilica.com/doc/933660
- Asgharpour, M.J. (2010). Multi-criteria decision making. Tehran University Publishing Institute[In parsaian]
- Atai, M. (2009). Fuzzy multi-criteria decision making. Shahrood University of Technology, Shahrood. [In parsaian]
- Azar, A. Rajabi, A. (2011). Applied decision making of MADM approach. Negah Danesh, Tehran[In parsaian].
- Bashiri, M. Hijazi, T. H. Mohtjeb, H. (2010). A new approach in multi-criteria decision-making. Shahid University, Tehran. [In parsaian]
- Ciklacandir, S. Isler, Y. (2023). Priority assessment of procuring medical equipment in Turkish hospitals using input-weighted fuzzy logic architecture. Expert Systems with Applications, Volume 213, Part C, 1 March 2023, p: 22
- Daga, A. Bjornstad, E., McCarthy, F., Bonilla Felix, M. (2023). Preparing for the unexpected, supporting the vulnerable. Pediatric Nephrology, volume 38,1697–1699.
- Danaifard, H. Elwani, M. Azar, A. (2008). Methodology of quantitative research in management: comprehensive approach. Eshraghi Publishing House, Tehran[In parsaian]
- Do,P. Berenguerb, C. (2020). Conditional reliability-based importance measures. Reliability Engineering and System Safety, 193 .
- Eskandari, M. Zainaldini Maimand, A. Navidi, M.N. Salmanpour, A. (2020). Investigating the efficiency of TOPSIS method in prioritizing land for saffron cultivation. Water and Water (Agricultural Sciences and Industries), 36(2), 237-249. [In parsaian]
- Forouzandeh Shahraki, A. Yadav, O. Vogiatzis, C. (2019). Components and Stochastic Imperfect Maintenance Actions. Reliability Engineering and System Safety.
- Fries R.C. (2013). Reliable design of Medical Devices. CRC Press. Taylor Fr. group, NY.
- García-Sanz-Calcedo, J. Sánchez-Barroso, G. González-Domínguez, J. (2022). Reliability Techniques in Industrial Design. Applied Sciences ,Volume 13.
- Groth, T.G. Stegmayr B. Ash, S. Kuchinka, J. Wieringa, F. Fisse, W. Roy, S. (Apr 2023). Wearable and implantable artificial kidney devices for end- stage kidney disease treatment: Current status and review. Artificial Organs, Volume 47, Issue 4. P649-666.
- Hernández-López, A. Pimentel-Aguilar, A. Ortiz-Posadas, M. (2020). An index to prioritize the preventive maintenance of medical equipment .Health and Technology volume 10, pages399–403
- Huaige, Z. Xuyang, B. Xianpei, H. (2022). Site selection of nursing homes based on interval type-2 fuzzy AHP, CRITIC and improved TOPSIS methods. Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 3789-3804.
- Hutagalung, A.O. Hasibuan, S.(2019). Determining the Priority of Medical Equipment Maintenance with Analytical Hierarchy Process. International journal of Online and Biomedical Engineering (iJOE) Vol. 15, No. 10, pp: 107-120.
- Huynh. K. T. (2020). Modeling past-dependent partial repairs for condition-based maintenance of continuously deteriorating systems . European Journal of Operational Research, 280 , 152–163.
- Ignacio Roig, J. Gomez, A. Romero, I. Carmen Carnero, M. (2018). Maintenance Policies Optimization of Medical Equipment in a Health Care Organization INTRODUCTION. IGI Global Category: Healthcare Administration, 3698-3710.
- Izadpanah, F. Shiehmorteza, M. Rahimpour, A. and Moradi, M. (2020). Prioritizing Medication Management Criteria of National Hospital Accreditation Standards Using FDANP Model. Journal of Pharmaceutical Research. Vol 32 No.3, pp.69-77.
- Jafaranjad, A. (2014). Management of production and operations of new concepts, systems, models and supply chain. Tehran University Publications. Tehran[In parsaian]
- Jafarnejad, A. (2014). PRIORITIZING CRITICAL BARRIERS OF COMPUTERIZED MAINTENANCE MANAGEMENT SYSTEM (CMMS) BY FUZZY MULTI ATTRIBUTE DECISION MAKING (F-MADM) (USING LFPP). Kuwait Chapter Arab. J. Bus. Manag. Rev, vol. 4, no. 3, 11–27.
- Li, R. Verhagen, W. Curran, R. (2020). A systematic methodology for Prognostic and Health Management system architecture definition. Reliability Engineering and System Safety , 193.
- Linnéusson ,G. H.C.Ng, A. , Aslam ,T. (2020). A hybrid simulation-based optimization frame work supporting strategic maintenance development to improve production performance. European Journal of Operational Research, 281, 402–414.
- Mahfoud, H. El Barkany, A. El Biyaali, A. (2016). A Hybrid Decision-Making Model for Maintenance Prioritization in Health Care Systems. American Journal of Applied Sciences, 13 (4). pp:439.450
- Maktoubian, J. Ansari, K. (2019). An IoT architecture for preventive maintenance of medical devices in healthcare organizations. Health and Technology, 9, 233–243.
- Maleki, M.R., Yarmohammadian, M.H., Mosadeghrad, A.M. and Keyvanara, M. (2020). Equipment value index (EVS) for prioritizing medical equipment in hospitals. International Journal of Health Care Quality Assurance, Vol. 33 No. 8, pp. 1009-1023.
- Maleki, M.R., Yarmohammadian, M.H., Mosadeghrad, A.M. and Keyvanara, M. (2020). Equipment priority index (EPI) for prioritizing medical equipment in hospitals. Journal of Biomedical Engineering and Medical Devices. Vol. 5 No. 1, pp. 1-7.
- Maleki, M.R., Yarmohammadian, M.H., Mosadeghrad, A.M. and Keyvanara, M. (2021). Equipment priority index based on AHP method for prioritizing medical equipment in hospitals. Journal of Medical Engineering & Technology, Vol. 45 No. 2, pp. 81-88
- Mohadi, M.M. Moini, H. Tavakoli Golpayegani, A. Nouri, A. Mousavi, S. Sh. Parsai, H. (1400). A non-invasive and low-cost device to determine dialysis adequacy in dialysis machines. Sadra Medical Sciences, 9(4), 367-374. [In parsaian].
- Momeni, M. Sharifi Salim, A.R. (2010). Multi-indicator decision making models and software. Authors, Tehran. [In parsaian].
- Nourani, M., Fatemi Ghomi, S.M.T. & Gholamian, M.R.(2020). Equipment importance index (EIS) for prioritizing medical equipment in hospitals. J Med Syst 44, 188 (2020).
- Perl, A. Brown, E. & others.(2023).Home dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, Volume 103, Issue 5, May, Pages 842-858.
- Pinho, M. Costa, A. Meneses, M. Manso, J. (2023). A multiple criteria sorting method for supporting the maintenance management of medical ventilators: The case of Hospital da Luz Lisboa. Socio-Economic Planning Sciences, Volume 86, April 2023, pp 1-28
- Raisi, A.R. Sattari, R. (2013, Khordad and Tir). Assessing the requirements for the establishment of a preventive maintenance program from the point of view of hospital managers and medical equipment engineers of hospitals and headquarters units. Health Information Management, 9th Volume / 2nd Number, 274-284. [In parsaian]
- Sadabadi, S.A. Hadi-Vencheh,A. Jamshidi, A. Jalali, M. (2022). An Improved Fuzzy TOPSIS Method with a New Ranking Index. International Journal of Information Technology & Decision MakingVol. 21, No. 02, pp. 615-641.
- Safari, H. Khanmohammadi, A. (2016). Multi-indicator decision making methods. Tehran University Publications Institute, first edition, Tehran.[In parsaian]
- Saleh, N. Sharawi, A. Abd Elwahed, M. Petti, A. Puppato, D. Balestra, G. (2015). Preventive Maintenance Prioritization Index of Medical Equipment Using Quality Function Deployment. IEEE Journal of Biomedical and Health Informatics.Volume: 19, Issue: 3, May 2015. pp. 1029 – 1035.
- Singh, V. Kumar, V. Singh, V.B.(2023)" A hybrid novel fuzzy AHP-TOPSIS technique for selecting parameter-influencing testing in software development"Decision Analytics Journal,Volume 6, March 2023, 100159
- Soufi, M., Jafarnejad, A., & Bayati, A. (2014, November). Priorizing Critical Barriers Of Computerized Maninyance Management System (CMMS) By Fuzzy Multi Attribute Decision Making (F-MADM) (USING LFPP). Kuwait Chapter of Arabian Journal of Business and Management Review, Vol. 4, No.3, 11-28.
- TAGHIPOUR SHARAREH,and BANJEVIC, DRAGAN. (2012). Optimum inspection interval for a system under periodic and opportunistic inspections. IIE Transactions, 932–948.
- Torkzad, A. and Beheshtinia, M.A. (2019). Evaluating and prioritizing hospital service quality. International Journal of Health Care Quality Assurance, Vol. 32 No. 2, pp. 332-346.