Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach
Subject Areas : Functional analysis
1 - Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
2 - Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
Keywords: fixed point method, impulsive Volterra integral equation, Lipschitz condition, Ulam&ndash, Hyers stability,
Abstract :
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
[1] M. Akkouchi, Hyers–Ulam–Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta. Univ. Apulen. Math. Inform. 26 (2011), 257-266.
[2] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simulat. (16) (2011), 1970-1977.
[3] M. Benchohra, A. Ouahab, Impulsive neutral functional differential inclusions with variable times, Electron. J. Diff. Equ. 2003 (2003), 1-12.
[4] M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theo. Diff. Equa. Spec. Edit. (8) (2009), 1-14.
[5] M. Benchohra, B. A. Slimani, Existence and uniqness of solutions to impulsive fractional differential equations, Electron. J. Diff. Equ. (10) (2009), 1-11.
[6] L. Cdariu, V. Radu, On the stability of the Cauchy functional equation a fixed point approach, Grazer. Math. Ber. 346 (2004), 43-52.
[7] L. P. Castro, A. Ramos, Hyers–Ulam–Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal. 3 (2009), 36-43.
[8] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
[9] M. Gachpazan, O. Baghani, Hyers–Ulam stability of nonlinear integral equation, Fixed Point Theory Appl. (2010), 2010:927640.
[10] M. Gachpazan, O. Baghani, Hyers–Ulam stability of Volterra integral equation, J. Nonlinear Anal. Appl. 1 (2010), 19-25.
[11] D. Guo, Nonlinear impulsive Volterra integral equations in Banach spaces and applications, J. Appl. Math. Stoch. Anal. 6 (1) (1993), 35-48.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[13] S. M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl. (2007), 2007: 057064.
[14] S. M. Jung, A fixed point approach to the stability of differential equations y′= F(x,y), Bull. Malays. Math. Sci. Soc. 33 (2010), 47-56.
[15] S. M. Jung, S. Sevgin, H. Sevli, On the perturbation of Volterra integro-differential equations, Appl. Math. Lett. 26 (2013), 665-669.
[16] T. Li, A. Zada, Connections between Hyers–Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces, Adv. Difference Equ. (2016), 2016:153.
[17] T. Li, A. Zada, S. Faisal, Hyers–Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl. 9 (2016), 2070-2075.
[18] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[19] R. Shah, A. Zada, A fixed point approach to the stability of a nonlinear Volterra integro-differential equation with delay, Hacet. J. Math. Stat. 47 (3) (2018), 615-623.
[20] S. Tang, A. Zada, S. Faisal, M. M. A. El-Sheikh, T. Li, Stability of higher–order nonlinear impulsive differential equations, J. Nonlinear Sci. Appl. 9 (2016), 4713-4721.
[21] S. M. Ulam, Problems in modern mathematics, John Wiley & Sons Inc., New York, 1960.
[22] A. Zada, W. Ali, S. Farina, Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Method. Appl. Sci. 40 (2017), 5502-5514.
[23] A. Zada, S. Faisal, Y. Li, On the Hyers–Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces. (2016), 2016:8164978.
[24] A. Zada, S. Faisal, Y. Li, Hyers–Ulam–Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10 (2017), 504-510.
[25] A. Zada, F. U. Khan, U. Riaz, T. Li, Hyers–Ulam stability of linear summation equations, Punjab U. J. Math. 49 (2017), 19-24.
[26] A. Zada, T. Li, S. Ismail, O. Shah, Exponential dichotomy of linear autonomous systems over time scales, Diff. Equa. Appl. 8 (2016), 123-134.
[27] A. Zada, S. O. Shah, Hyers–Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat. 47 (5) (2018), 1196-1205.
[28] A. Zada, S. O. Shah, S. Ismail, T. Li, Hyers–Ulam stability in terms of dichotomy of first order linear dynamic systems, Punjab. Uni. J. Math. 49 (2017), 37-47.
[29] A. Zada, O. Shah, R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comp. 271 (2015), 512-518.
[30] A. Zada, P. Wang, D. Lassoued, T. Li, Connections between Hyers–Ulam stability and uniform exponential stability of 2–periodic linear nonautonomous systems, Adv. Difference Equ. (2017), 2017:192.