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1. Introduction and preliminaries

We say that a functional equation is stable, if for every approximate solution, there
exists an exact solution near it. In 1940, Ulam posed the following problem concerning
the stability of functional equations [21]: we are given a group G and a metric group G′

with metric d(., .). Given ϵ > 0, does there exists a δ > 0 such that if f : G → G′ satisfies

d(f(uv), f(u)f(v)) < δ (1)

for all u, v ∈ G, then a homomorphism h : G → G′ exists with d(f(u), h(u)) < ϵ for
all u ∈ G? The problem for the case of approximately additive mappings was solved
by Hyers [12] when G and G′ are Banach spaces. Thereafter, this type of stability is
called the Ulam–Hyers stability. In 1978, Rassias [18] proved the existence of unique
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linear mappings near approximate additive mappings that provide generalization of the
Hyers result. By using the notion of Cadariu and Radu [6], Jung [13] applied the fixed
point method to the investigation of Volterra integral equation. They verified that if a
continuous function v : I → C satisfies the Volterra integral equation of second kind such
that ∣∣∣v(t)− ∫ t

c
f(ξ, v(ξ))dξ

∣∣∣ ⩽ ϕ(t)

for all t ∈ I, then there exists a unique continuous function v0 : I → C and a constant
K such that

v0(t) =

∫ t

c
f(ξ, v0(ξ))dξ and | v(t), v0(t) |⩽ Kϕ(t) for all t ∈ I.

The theory of nonlinear impulsive differential and integral equations and inclusions have
become important in some mathematical models of real processes and phenomena stud-
ied in physics, chemical technology, population dynamics, biotechnology and economics
(see [3]). In paper [11], Guo established some existence theorems of external solutions for
nonlinear impulsive Volterra equations on a finite interval with a finite number of mo-
ments of impulse effect in Banach spaces, and offered some applications to initial value
problems for the first order impulsive differential equations in Banach spaces. Seeing that
many problems in applied mathematics lead to the study of systems of differential or in-
tegral equations, the existence of solutions for system of nonlinear impulsive Volterra
integral equations on the infinite interval R+ with an infinite number of moments of
impulse effect in Banach spaces is studied.

In 2009, Benchohra et al. [5] discussed the existence and uniqueness of solutions to im-
pulsive fractional differential equations. Also they extend the idea of impulsive fractional
differential equations in Banach spaces, see [4]. Moreover, Balachandran et al. [2] proved
some new results in Banach spaces for fractional impulsive integro-differential equations.
In this paper, we presented the stability results in the sense of Hyers and Ulam of im-
pulsive Volterra integral equation by applying fixed point approach. For detailed study
of Ulam-type stability with different approaches, we recommend some papers such as
[1, 7, 9, 10, 14–17, 19, 20, 22–30].

The main purpose of this paper is to examine the stability of impulsive Volterra integral
equation of second kind given by

v(t) =

∫ t

c
f(α, v(α))dα+

∑
c<tk<t

Ik(v(t
−
k )), (2)

where f is a continuous function and c is a fixed real number, Ik : C → C, k = 1, 2, . . . ,m
and v(t−k ) represents the left limit of v(t) at t = tk.

Definition 1.1 If for each function v(t) satisfying

∣∣∣v(t)− ∫ t

c
f(α, v(α))dα−

∑
c<tk<t

Ik(v(t
−
k ))

∣∣∣ ⩽ φ(t),

where φ(t) ⩾ 0 for all t ∈ I, there exists a solution v0(t) of the impulsive Volterra integral
equation (2) and a constant K > 0 with |v(t)− v0(t)| ⩽ Kφ(t) for all t ∈ I, where K is
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independent of v(t) and v0(t), then we say that the implusive Volterra integral equation
(2) has the Hyers–Ulam–Rassias stability. If φ(t) is a constant function in the above
inequalities, we say that the implusive Volterra integral equation (2) has the Hyers–
Ulam stability.

For a nonempty set Y , we introduce the definition of generalized metric on Y as follows.

Definition 1.2 A mapping d : Y × Y → [0,∞] is called a generalized metric on set Y
iff d holds:
(a) d(u, v) = 0 if and only if u = v;
(b) d(u, v) = d(v, u) for all u, v ∈ Y ;
(c) d(u,w) ⩽ d(u, v) + d(v, w) for all u, v, w ∈ Y .

We now introduce one of the fundamental results of fixed point theory. For the proof,
we refer to [8]. This theorem will play an important role in proving our main theorems.

Theorem 1.3 Let (Y, d) be a generalized complete metric space. Assume that Θ : Y →
Y is a strictly contractive operator with L < 1, where L is a Lipschitz constant. If there
exists a nonnegative integer k such that d(Θk+1u,Θku) < ∞ for some u ∈ Y , the the
following are true:
(a) The sequence Θnu converges to a fixed point u∗ of Θ;

(b) u∗ is the unique fixed point of Θ in Y ∗ =
{
v ∈ Y | d(Θku, v) < ∞

}
;

(c) If v ∈ Y ∗, then d(v, u∗) ⩽ 1
1−L d(Θv, v).

In this paper, using the fixed point Theorem 1.3, we study the Hyers–Ulam–Rassias
stability and the Hyers–Ulam stability of the impulsive Volterra integral equation (2).

2. Hyers–Ulam–Rassias stability

In this section, we are going to prove the Hyers–Ulam–Rassias stability of impulsive
Volterra integral equation (2).

Theorem 2.1 Suppose I = [a1, b1] be given for fixed real numbers a1, b1 with a1 < b1
and K,L1, L2 are positive constants with 0 < KL1 + L2 < 1. Let f : I × C → C is
continuous function which satisfy the Lipschitz condition∣∣∣f(t, u1)− f(t, v1)

∣∣∣ ⩽ L1

∣∣∣u1 − v1

∣∣∣ (3)

for any t ∈ I and u1, v1 ∈ C.
Moreover, Ik : C → C and there exists a constant L2 such that∣∣∣Ik(u1)− Ik(v1)

∣∣∣ ⩽ L2

∣∣∣u1 − v1

∣∣∣ (4)

for all u1, v1 ∈ C.
Let v : I → C be a continuous function such that

∣∣∣v(t)− ∫ t

c
f(α, v(α))dα−

∑
c<tk<t

Ik(v(t
−
k ))

∣∣∣ ⩽ φ(t) (5)
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for all t ∈ I and for some c ∈ I, where Ik : C → C, k = 1, 2, ...,m and v(t−k ) represents
the left limit of v(t) at t = tk, where φ : I → (0,∞) is a continuous function with

∣∣∣ ∫ t

c
φ(ζ)dζ

∣∣∣ ⩽ Kφ(t) (6)

for all t ∈ I, then there exists a unique continuous function v0 : I → C such that

v0(t) =

∫ t

c
f(α, v0(α))dα+

∑
c<tk<t

Ik(v0(t
−
k )), (7)

and

|v(t)− v0(t)| ⩽
1

1− (KL1 + L2)
φ(t) (8)

for all t ∈ I.

Proof. First, we define a set Y = {h0 : I → C|h0 is continuous} and introduced a
generalized metric on Y as follows:

d(f, h0) = inf{C ∈ [0,∞], |f(t)− h0(t)| ⩽ Cφ(t), for all t ∈ I}. (9)

We can see easily that (Y, d) is a complete generalized metric space, see [13]. Consider
the operator Θ : Y → Y defined by

(Θh1)(t) =

∫ t

c
f(α, h1(α))dα+

∑
c<tk<t

Ik(h1(t
−
k )) (10)

for all h1 ∈ Y and t ∈ I. Next, we will check that the operator Θ is strictly contractive
on the set Y . Suppose g1, h1 ∈ Y and assume that Cg1h1

∈ [0,∞] be a constant with
d(g1, h1) ⩽ Cg1h1

for any g1, h1 ∈ Y . By (9), we can write

|g1(t)− h1(t)| ⩽ Cg1h1
φ(t) (11)

for all t ∈ I. From inequalities (3), (4), (6), (10) and (11) it follows that

|(Θg1)(t)− (Θh1)(t)| =
∣∣∣ ∫ t

c

{
f(α, g1(α))− f(α, h1(α))

}
dα

∣∣∣
+
∣∣∣ ∑
c<tk<t

{
Ik(g1(t

−
k ))− Ik(h1(t

−
k ))

}∣∣∣
⩽ L1Cg1h1

∣∣∣ ∫ t

c
φ(α)dα

∣∣∣+ L2

∑
c<tk<t

∣∣∣g1(t−k )− h1(t
−
k ))

∣∣∣
⩽ (KL1 + L2)Cg1h1

φ(t)

for all t ∈ I, i.e., d(Θg1,Θh1) ⩽ (KL1 + L2)Cg1h1
. Hence, we may conclude that

d(Θg1,Θh1) ⩽ (KL1 + L2)d(g1, h1) for any g1, h1 ∈ Y , where 0 < KL1 + L2 < 1.
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It follows from (10) that for any arbitrary h0 ∈ Y , there exists a constant C ∈ [0,∞]
with

|Θh0(t)− h0(t)| =
∣∣∣ ∫ t

c
g1(α, h0(α))dα+

∑
c<tk<t

Ik(h1(t
−
k ))− h0(t)

∣∣∣ ⩽ Cφ(t)

for all t ∈ I. Since g1, h0 are bounded and min
t∈I

φ(t) > 0, then equation (9) implies that

d(Θh0, h0) < ∞. (12)

So, according to Theorem 1.3 (a), v0 : I → C a continuous function exists in a way
that Θnh0 → h0 in (Y, d) and Θv0 = v0, i.e., v0 satisfies (7) for all t ∈ I. Next, we
show that {g1 ∈ Y |d(h0, g1) < ∞} = Y , where h0 was selected with the property (12).
Let g1 ∈ Y , since we know that g1 and h0 are bounded on closed interval I for and
mint∈I φ(t) > 0, then a constant exists Cg1 ∈ [0,∞] such that |h0(t) − g1(t)| ⩽ Cg1φ(t)
for all t ∈ I. Thus, we can write that d(h0, g1) < ∞ for any g1 ∈ Y . Therefore, we get
that {g1 ∈ Y |d(h0, g1) < ∞} = Y . From Theorem 1.3 (b), we conclude that v0, given by
equation (7), is the unique continuous function. Finally, Theorem 1.3 (c) implies that

d(v, v0) ⩽
1

1− (KL1 + L2)
d(Θv, v) ⩽ 1

1− (KL1 + L2)
, (13)

since inequality (5) means that d(Θv, v) ⩽ 1. In view of (9), we can conclude that the
inequality (8) holds for all t ∈ I. ■

In the previous theorem, we have examined the Hyers–Ulam–Rassias stability of the
impulsive Volterra integral equation (2) defined on compact domains. Now, we will prove
the last theorem for the case of unbounded domains.

Theorem 2.2 Suppose I denote either R or (−∞, a] or [a,∞) and K,L1, L2 are positive
constants with 0 < KL1+L2 < 1. Let f : I×C → C is continuous function which satisfies
the Lipschitz condition (3) for all t ∈ I and u1, v1 ∈ C. Moreover, Ik : C → C be impulse
satisfying the condition (4) with constant L2, for all u1, v1 ∈ C. Let v : I → C be
a continuous function satisfies inequality (5) for all t ∈ I and for some c ∈ I, where
φ : I → (0,∞) is a continuous function satisfying condition (6) for any t ∈ I, then there
exists a unique continuous function v0 : I → C which satisfies (7) and (8) for all t ∈ I.

Proof. First, we will prove our theorem for the case I = R. For any n ∈ N, we define the
interval In = [c−n, c+n]. In accordance with Theorem (2.1) exists a unique continuous
function v0,n : In → C such that

v0,n(t) =

∫ t

c
f(α, v0,n(α))dα+

∑
c<tk<t

Ik(v0,n(t
−
k )) (14)

and

|v(t)− v0(t)| ⩽
1

1− (KL1 + L2)
φ(t), for all t ∈ I. (15)
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The uniqueness of v0,n implies that if t ∈ In, then

v0,n(t) = v0,n+1(t) = v0,n+2(t) = · · · . (16)

For t ∈ R. Define n(t) ∈ N as n(t) := min{n ∈ N| t ∈ In}. Next, we define a function
v0 : R → C by

v0(t) = v0,n(t)(t) (17)

and claiming that v0 is continuous. For any t1 ∈ R we take the integer n1 = n(t1). Then,
t1 belongs to the interior of the interval In1+1 and there exists positive ε > 0 such that
v0(t) = v0,n1+1(t) for all t with t1 − ε < t < t1 + ε. Since v0,n1+1 is continuous at t1, so is
v0. That is v0 is continuous at t1 for any t1 ∈ R.

We will now prove that the continuous function v0 satisfies (7) and (8) for all t ∈ R.
Assume that n(t) be an integer for any t ∈ R. Then it holds that t ∈ In(t) and it follows
from (14) that

v0(t) = v0,n(t)(t) =

∫ t

c
f(α, v0,n(t)(α))dα+

∑
c<tk<t

Ik(v0,n(t
−
k ))

=

∫ t

c
f(α, v0(α))dα+

∑
c<tk<t

Ik(v0(t
−
k )),

where the last condition holds true because n(α) < n(t) for any α ∈ In(t) and it follows
from (16) that

v0(α) = v0,n(α)(α) = v0,n(t)(α). (18)

Since v0(t) = v0,n(t)(t) and t ∈ In(t) for all t ∈ R, (15) implies that

|v(t)− v0(t)| = |v(t)− v0,n(t)(t)| ⩽
1

1− (KL1 + L2)
φ(t). (19)

Finally, we are going to prove that v0 is unique. To do this, we consider another continuous
function v1 : R → C which satisfies (7) and (8), with v1 instead of v0 for all t ∈ R. Suppose
that t ∈ R be optional number. Since the restrictions v0|In(t)

and v1|In(t)
both satisfies

(7) and (8) for each t ∈ In(t), the uniqueness of v0,n(t) = v0|In(t)
suggest that

v0(t) = v0|In(t)
(t) = v1|In(t)

(t) = v1(x)

are required. We can prove similarly for the cases I = (−∞, a] and I = [a,∞). ■

3. Hyers–Ulam stability

In this section, we prove the Hyers–Ulam stability of impulsive Volterra integral equation
(2).

Theorem 3.1 Given p ∈ R and q > 0, suppose that I(p ; q) denote a closed interval
{t ∈ R|p − q ⩽ t ⩽ p + q}. Let f : I(p ; q) × C → C is continues function which satisfies
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the Lipschitz condition (3) for all t ∈ I, u1, v1 ∈ C where L1 and L2 are constants with
0 < L1q + L2 < 1 and Ik : C → C with constant L2 satisfy the Lipschitz condition (4).
If σ ⩾ 0 and a continuous function v : I(p ; q) → C which satisfies

∣∣∣v(t)− b−
∫ t

p
f(α, v(α))dα−

∑
c<tk<t

Ik(v(t
−
k ))

∣∣∣ ⩽ σ

for all t ∈ I(p; q), where b is complex number, then there exists a unique continuous
function v0 : I(p; q) → C such that

v0(t) = b+

∫ t

p
f(α, v0(α))dα+

∑
c<tk<t

Ik(v0(t
−
k )) (20)

and

|v(t)− v0(t)| ⩽
σ

1− (L1q + L2)
(21)

for all t ∈ I(p ; q).

Proof. Let Y = {h1 : I(p ; q) → C|h1 is continuous} be a set and we introduce a
generalized metric on set Y as:

d(g1, h1) = inf{C ∈ [0,∞], |g1(t)− h1(t)| ⩽ C, for all t ∈ I(p ; q)}. (22)

We can see easily that (Y, d) is a complete generalized metric space see [13]. Consider
the operator Θ : Y → Y defined by

(Θh1)(t) = b+

∫ t

c
f(α, h1(α))dα+

∑
c<tk<t

Ik(h1(t
−
k )) (23)

and for all h1 ∈ Y and t ∈ I(p ; q). Next, we will to check that the operator Θ is strictly
contractive on the set Y . Suppose that Cg1h1

∈ [0,∞] be a constant with d(g1, h1) ⩽ Cg1h1

for any g1, h1 ∈ Y . We have

|g1(t)− h1(t)| ⩽ Cg1h1
, for all t ∈ I(p ; q). (24)

By making the use of (3), (4), (22), (23) and (24) we deduce

|(Θg1)(t)− (Θh1)(t)| =
∣∣∣ ∫ t

p

{
f(α, g1(α))− f(α, h1(α))

}
dα

∣∣∣
+
∣∣∣ ∑
c<tk<t

{
Ik(g1(t

−
k ))− Ik(h1(t

−
k ))

}∣∣∣
⩽

∣∣∣ ∫ t

p
L1

∣∣g1(α)− h1(α)
∣∣dα+ L2

∑
c<tk<t

∣∣g1(t−k )− h1(t
−
k )

∣∣∣∣∣
⩽ L1Cg1h1

|t− p|+ L2Cg1h1

⩽ (L1q + L2)Cg1h1
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for all t ∈ I(p ; q) i.e., d(Θg1,Θh1) ⩽ (L1q + L2)Cg1h1
. Hence, we may conclude that

d(Θg1,Θh1) ⩽ (L1q + L2)d(g1, h1) for any g1, h1 ∈ Y , where 0 < L1q + L2 < 1. By
applying same procedure as in Theorem 2.1, we can choose h0 ∈ Y with d(Θh0, h0) <
∞. Hence, from Theorem 1.3 (a) it follows that there exists a continuous function say
v0 : I(p ; q) → C in a way that Θh0 → v0 in (Y, d) as n → ∞, and such that v0 satisfies
the impulsive Volterra integral equation (20) for any t ∈ I(p ; q).
Next, we are going to show that Y= {g1 ∈ Y |d(h0, g1) < ∞}. By applying a similar
argument to the proof of Theorem 2.1 to this case. Therefore, Theorem 1.3 (b) implies
that v0 is a unique continuous function with property (20). Furthermore, Theorem 1.3
(c) implies that |v(t)− v0(t)| ⩽ σ

1−(L1q+L2)
for all t ∈ Y . ■

4. Conclusion

Two kind of novel stability concepts, Hyers–Ulam–Rassias stability and Hyers–Ulam sta-
bility, of a impulsive Volterra integral equation are offered. Using Banach’s fixed point
theorem in a generalized complete metric space, we prove the Hyers–Ulam–Rassias sta-
bility on bounded and unbounded intervals and Hyers–Ulam stability results on a finite
and closed interval.
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