Random fixed point theorems with an application to a random nonlinear integral equation
Subject Areas : History and biographyR. A. Rashwan 1 * , H. A. Hammad 2
1 - Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt
2 - Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
Keywords: nonlinear integral random equation, contractively generalized hybrid, Random fixed point,
Abstract :
In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have beenproved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.
[1] J. Achari, On a pair of random generalized non-linear contractions. Int. J. Math. Math. Sci., 6 (3) (1983), 467-475.
[2] R. F. Arens, A topology for spaces of transformations. Annals Math., 47 (2) (1946), 480-495.
[3] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math., 3 (1922), 133-181.
[4] I. Beg, D. Dey and M. Saha, Converegence and stability of two random iteration algorithms. J. Nonlinear Funct. Anal., 2014 (2014), 1-15.
[5] V. Berinde, Approximating fixed points of weak contractions using Picard iteration. Nonlinear Anal. Forum, 9 (1) (2004), 43-53.
[6] A. T. Bharucha-Reid, Random integral equations. Academic Press, New York, 1972.
[7] A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc., 82 (5) (1976), 641-657.
[8] S. K. Chatterjea, Fixed point theorems. C. R. Acad. Bulgare Sci., 25 (1972), 727-730.
[9] O. Hans, Reduzierende zuf allige transformationen. Czechoslov. Math. J., 7 (82) (1957), 154-158.
[10] K. Hasegawa, T. Komiya and W. Takahashi, Fixed point theorems for general contractive mappings in metric spaces and estimating expressions. Sci. Math. Jpn., 74 (2011), 15-27.
[11] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl., 67 (2) (1979), 261-273.
[12] M. C. Joshi and R. K. Bose, Some topics in nonlinear functional analysis. Wiley Eastern Ltd., New Delhi, 1984.
[13] R. Kannan, Some results on fixed points. Bull. Cal. Math. Soc., 60 (1968), 71-76.
[14] P. Kocourek, W. Takahashi and J. C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces. Taiw. J. Math., 14 (2010), 2497-2511.
[15] A. C. H. Lee and W. J. Padgett, On random nonlinear contraction. Math. Systems Theory, ii (1977), 77-84.
[16] A. Mukherjee, Transformation aleatoires separable theorem all point fixed aleatoire. C. R. Acad. Sci. Paris, Ser. A-B, 263 (1966), 393-395.
[17] W. J. Padgett, On a nonlinear stochastic integral equation of the Hammerstein type. Proc. Amer. Math. Soc., 38 (1) (1973), 625-631.
[18] R. A. Rashwan and D. M. Albaqeri, A common random fixed point theorem and application to random integral equations. Int. J. Appl. Math. Reser., 3 (1) (2014), 71-80.
[19] B. E. Rhoades, Fixed point iterations using infinite matrices. Trans. Amer. Math. Soc., 196 (1974), 161-176.
[20] E. Rothe, Zur theorie der topologische ordnung und der vektorfelder in Banachschen Raumen. Composito Math., 5 (1937), 177-197.
[21] M. Saha, On some random fixed point of mappings over a Banach space with a probability measure. Proc. Nat. Acad. Sci., 76 (III) (2006), 219-224.
[22] M. Saha and L. Debnath, Random fixed point of mappings over a Hilbert space with a probability measure Adv. Stud. Contemp. Math., 1 (2007), 79-84.
[23] M. Saha and A. Ganguly, Random fixed point theorem on a Ciric-type contractive mapping and its consequence. Fixed Point Theory and Appl., 2012 (2012), 1-18.
[24] M. Saha and D. Dey, Some random fixed point theorems for (θ, L)-weak contractions. Hacett. J. Math. Statist., 41 (6) (2012), 795-812.
[25] V. M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators. Proc. Amer. Math. Soc., 90 (1) (1984), 425-429.
[26] A. Spacek, Zufallige Gleichungen. Czechoslovak Math. J., 5 (80) (1955), 462-466.
[27] T. Zamfirescu, Fixd point theorems in metric spaces. Arch. Math. (Basel), 23 (1972), 292-298.