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1. Introduction

Fixed point theory has the diverse applications in different branches of mathemat-
ics, statistics, engineering, and economics in dealing with the problems arising in
approximation theory, potential theory, game theory, theory of differential equations,
theory of integral equations, and others. Developments in the investigation on fixed
points of non-expansive mappings, contractive mappings in different spaces like metric
spaces, Banach spaces, Fuzzy metric spaces and cone metric spaces have almost been
saturated. The study of random fixed point theorems was initiated by the Prague
school of probabilistic in 1950’s. The introduction of randomness leads to several new
questions of measurability of solutions, probabilistic and statistical aspects of random
solutions. Random fixed point theorems for random contraction mappings on separable
complete metric spaces were first proved by Hanš [9] and Špaček [26]. The survey article
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by Bharucha-Reid [7] in 1976 attracted the attention of several mathematicians and
gave wings to this theory. The results of Špaček and Hanš in multi-valued contractive
mappings was extended by Itoh [11]. By the same author random fixed point theorems
with an application to random differential equations in Banach spaces are obtained.
Mukherjee [16] gave a random version of Schauder’s fixed point theorem on an atomic
probability measure space. While Bharucha-Reid [6, 7] generalized Mukherjee’s result on
a general probability measure space. On the other hand, some authors [4, 17, 18, 23, 24]
applied a random fixed point theorem to prove the existence of a solution in a Banach
space of a random nonlinear integral equation. Sehgal and Waters [25] had obtained
several random fixed point theorems including a random analogue of the classical results
due to Rothe [20]. In some recent papers of Saha et al. [21, 22], some random fixed
point theorems over separable Banach spaces and separable Hilbert spaces have been
established.

On the other hand, the first fundamental fixed point theorem in deterministic
form was due to S. Banach [3] in a metric space setting, this theorem runs as follows:

Theorem 1.1 (Banach contraction principle) Let (X, d) be a complete metric space,
c ∈ [0, 1) and let T : X → X be a mapping such that for each x, y ∈ X,

d(Tx, Ty) ⩽ cd(x, y).

Then T has a unique fixed point z ∈ X such that for each x ∈ X, lim
n→∞

Tnx = z.

After this classical result, Kannan [13] gave a substantially new contractive mapping
where the mapping T need not be continuous on X (but continuous at their fixed points,
see [19]). He considered the contractive condition as follows: there exists a constant
b ∈ [0, 12) such that

d(Tx, Ty) ⩽ b[d(x, Tx) + d(y, Ty)],

for all x, y ∈ X. A mapping T : X → X is said to be contractively nonspreading [8, 27]
if there exists β ∈ [0, 12) such that

d(Tx, Ty) ⩽ β[d(x, Ty) + d(y, Tx)],

for all x, y ∈ X. A mapping T : X → X is called contractively hybrid [10] if there exists
γ ∈ [0, 12) such that

d(Tx, Ty) ⩽ γ[d(x, Ty) + d(y, Tx) + d(y, x)],

motivated by generalized hybrid mappings [14] in a Hilbert space, Takahashi et al. [10]
introduced the concept of contractively generalized hybrid mappings on metric spaces
and studied fixed point theorems for such mappings on complete metric spaces. Let (X, d)
be a metric space, a mapping T : X → X is called contractively generalized hybrid [10]
if there exist α, β ∈ R and γ ∈ [0, 1) such that

αd(Tx, Ty) + (1− α)d(x, Ty) ⩽ γ{βd(y, Tx) + (1− β)d(y, x)}, (1.1)

for all x, y ∈ X, such a mapping T is also called contractively (α, β, γ)-generalized hybrid.
For example, a contractively (α, β, γ)-generalized hybrid mapping is r−contractive for
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α = 1 and β = 0. It is contractively nonspreading for α = 1+ r and β = 1, see Takahashi
et al. [10].

2. Preliminaries

In order to prove our main results, we need to recall the following concepts and results.
Let(X,

∑
) be a separable Banach space where

∑
is a σ-algebra of Borel subsets of X

and let (Ω,
∑

, µ) denote a complete probability measure space with measure µ and
∑

be a σ-algebra of subsets of Ω. For more details one can see Joshi and Bose [12].

Definition 2.1 A mapping x : Ω → X is said to be an X−valued random variable, if
the inverse image under the mapping x of every Borel set B of X belongs to

∑
, that is,

x−1(B) ∈
∑

for all B ∈
∑

.

Definition 2.2 A mapping x : Ω → X is said to be a finitely valued random variable,
if it is constant on each of a finite number of disjoint sets Ai ∈

∑
and is equal to

0 on Ω −
(

n∪
i=1

Ai

)
. X is called a simple random variable if it is finitely valued and

µ{ω : ∥x(ω)∥ > 0} < ∞ .

Definition 2.3 A mapping x : Ω → X is said to be a strong random variable, if there
exists a sequence {xn(ω)} of simple random variables which converges to x(ω) almost
surely, i.e., there exists a set A0 ∈

∑
with (A0) = 0 such that lim

n→∞
xn(ω) = x(ω),

ω ∈ Ω−A0.

Definition 2.4 A mapping x : Ω → X is said to be weak random variable, if the function
x∗(x(ω)) is a real valued random variables for each x∗ ∈ X∗, the space X∗ denoting the
first normed dual space of X.

Remark 1
(1) In a separable Banach space X, the notions of strong and weak random variables
x : Ω → X coincide and respect of such a space X, x is termed as a random variable
(see Joshi and Bose [12, Corollary 1]).

(2) If X is a separable Banach space then the σ−algebra generated by the class of
all spherical neighourhoods of X is equal to the σ−algebra of Borel subsets of X. Hence
every strong and also weak random variable is measurable in the sense of Definition 2.1.

Let Y be another Banach space. We also need the following definitions as cited in Joshi
and Bose [12].

Definition 2.5 A mapping F : Ω×X → Y is said to be a random mapping if F (ω, x) =
Y (ω) is a Y−valued random variable for every x ∈ X.

Definition 2.6 A mapping F : Ω×X → Y is said to be a continuous random mapping
if the set of all ω ∈ Ω for which F (ω, x) is a continuous function of x has measure one.

Definition 2.7 An equation of the type F (ω, x(ω)) = x(ω), where F : Ω×X → Y is a
random mapping, is called a random fixed point equation.

Definition 2.8 Any mapping x : Ω → X which satisfies the random fixed point equation
F (ω, x(ω)) = x(ω) almost surely is said to be a wide sense solution of the fixed point
equation.
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Definition 2.9 Any X−valued random variable x(ω) which satisfies µ{ω : F (ω, x(ω)) =
x(ω)} = 1 is said to be a random solution of the fixed point equation or a random fixed
point of F .

Remark 2 A random solution is a wide sense solution of the fixed point equation, but
the converse is not necessarily true. This is evident from the following example as found
under Joshi and Bose [12, Remark 1].

Our main aim of this paper is to define the random analogue of a (α, β, γ)-generalized
hybrid and thereby prove the stochastic version of the deterministic fixed point theorem
in a separable Banach space. Also some more random fixed point theorems have been
established in separable Banach space to investigate this relatively new field of research
extensively with application.

Now, we define the random version of a (α, β, γ)−generalized hybrid and then establish
a random fixed point theorem for (α, β, γ)−generalized hybrid.

3. Random analogue of (α, β, γ)-generalized hybrid

Definition 3.1 LetX be a separable Banach space and (Ω,
∑

, µ) a complete probability
measure space. Then T : Ω×X → X is called a random contractively generalized hybrid
if there exist a finitely real valued random variables α(ω), β(ω) and γ(ω) such that

α(ω) ∥T (ω, x1)− T (ω, x2)∥ ⩽ γ(ω)
(
β(ω) ∥x2 − T (ω, x1)∥+ (1− β(ω)) ∥x1 − x2∥

)
− (1− α(ω)) ∥x1 − T (ω, x2)∥ , (3.1)

for all x1, x2 ∈ X.

Theorem 3.2 Let X be a separable Banach space and (Ω,
∑

, µ) a complete probability
measure space. Let T : Ω × X −→ X be a continuous operator satisfying (3.1) almost
surely, where 0 ⩽ γ(ω) < 1 is a real valued random variable and γ(ω).β(ω) < α(ω)
almost surely. Then there exists a random fixed point of T.

Proof. Let A = {ω ∈ Ω : T (ω, x) is a continuous function of x},

B =
{
ω ∈ Ω : 0 ⩽ γ(ω) < 1

}
∩
{
ω ∈ Ω : γ(ω).β(ω) < α(ω)

}
,

Cx1,x2
=

{
ω ∈ Ω : α(ω) ∥T (ω, x1)− T (ω, x2)∥ ⩽ γ(ω)

(
β(ω) ∥x2 − T (ω, x1)∥

+(1− β(ω)) ∥x1 − x2∥
)
− (1− α(ω)) ∥x1 − T (ω, x2)∥

}
.

Let S be a countable dense subset of X, we now prove that

∩
x1,x2∈X

(Cx1,x2
∩A ∩B) =

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B).
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Let ω ∈
∩

s1,s2∈X
(Cs1,s2 ∩A ∩B). Then for all s1, s2 ∈ X,

α(ω) ∥T (ω, s1)− T (ω, s2)∥ ⩽ γ(ω){β(ω) ∥s2 − T (ω, s1)∥

+(1− β(ω)) ∥s1 − s2∥} − (1− α(ω)) ∥s1 − T (ω, s2)∥ ,

note that for all x1, x2 ∈ X,

∥s1 − s2∥ ⩽ ∥s1 − x1∥+ ∥x1 − x2∥+ ∥x2 − s2∥ , (3.2)

∥s1 − T (ω, s1)∥ ⩽ ∥s1 − x1∥+ ∥x1 − T (ω, x1)∥+ ∥T (ω, x1)− T (ω, s1)∥ , (3.3)

∥s2 − T (ω, s2)∥ ⩽ ∥s2 − x2∥+ ∥x2 − T (ω, x2)∥+ ∥T (ω, x2)− T (ω, s2)∥ , (3.4)

∥s1 − T (ω, s2)∥ ⩽ ∥s1 − x1∥+ ∥x1 − T (ω, x2)∥+ ∥T (ω, x2)− T (ω, s2)∥ , (3.5)

∥s2 − T (ω, s1)∥ ⩽ ∥s2 − x2∥+ ∥x2 − T (ω, x1)∥+ ∥T (ω, x1)− T (ω, s1)∥ . (3.6)

Let x1, x2 ∈ X, we have

α(ω) ∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω) ∥T (ω, x1)− T (ω, s1)∥+ α(ω) ∥T (ω, s1)− T (ω, s2)∥

+α(ω) ∥T (ω, s2)− T (ω, x2)∥

⩽ α(ω) ∥T (ω, x1)− T (ω, s1)∥+ α(ω) ∥T (ω, s2)− T (ω, x2)∥

+γ(ω){β(ω) ∥s2 − T (ω, s1)∥+ (1− β(ω)) ∥s1 − s2∥}

−(1− α(ω)) ∥s1 − T (ω, s2)∥ ,

using (3.2), (3.5) and (3.6) we have

α(ω) ∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω) ∥T (ω, x1)− T (ω, s1)∥+ α(ω) ∥T (ω, s2)− T (ω, x2)∥

+γ(ω).β(ω)[∥s2 − x2∥+ ∥x2 − T (ω, x1)∥+ ∥T (ω, x1)− T (ω, s1)∥]

+γ(ω)(1− β(ω))[∥s1 − x1∥+ ∥x1 − x2∥+ ∥x2 − s2∥]

−(1− α(ω))[∥s1 − x1∥+ ∥x1 − T (ω, x2)∥+ ∥T (ω, x2)− T (ω, s2)∥]

⩽ (α(ω) + γ(ω).β(ω)) ∥T (ω, x1)− T (ω, s1)∥+ (2α(ω)− 1) ∥T (ω, s2)− T (ω, x2)∥

+γ(ω){β(ω) ∥x2 − T (ω, x1)∥+ (1− β(ω)) ∥x1 − x2∥} − (1− α(ω)) ∥x1 − T (ω, x2)∥

+[γ(ω).β(ω) + γ(ω)(1− β(ω))] ∥x2 − s2∥+ [γ(ω)(1− β(ω))− (1− α(ω))] ∥s1 − x1∥

< 2α(ω) ∥T (ω, x1)− T (ω, s1)∥+ (2α(ω)− 1) ∥T (ω, s2)− T (ω, x2)∥

+γ(ω){β(ω) ∥x2 − T (ω, x1)∥+ (1− β(ω)) ∥x1 − x2∥} − (1− α(ω)) ∥x1 − T (ω, x2)∥

+γ(ω) ∥x2 − s2∥+ (γ(ω)− 1) ∥s1 − x1∥ .
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Since for a particular ω ∈ Ω, T (ω, x) is a continuous function of x, so for any ϵ > 0, there
exists δi(xi) > 0 (i = 1, 2) such that

∥T (ω, x1)− T (ω, s1)∥ <
ϵ

8α(ω))
, whenever ∥x1 − s1∥ < δ1(x1) =

ϵ

4(γ(ω)− 1)
,

and

∥T (ω, x2)− T (ω, s2)∥ <
ϵ

4(2α(ω)− 1)
, whenever ∥x2 − s2∥ < δ2(x2) =

ϵ

4γ(ω)
,

if we take ρ1 = min(δ1,
ε
4) and ρ2 = min(δ2,

ε
4), for such a choic of ρ1 and ρ2, we get

α(ω) ∥T (ω, x1)− T (ω, x2)∥ ⩽ ϵ

4
+

ϵ

4
+

ϵ

4
+

ϵ

4
+ γ(ω){β(ω) ∥x2 − T (ω, x1)∥

+(1− β(ω)) ∥x1 − x2∥} − (1− α(ω)) ∥x1 − T (ω, x2)∥ .

As ϵ > 0 is arbitrary, it follow that

α(ω) ∥T (ω, x1)− T (ω, x2)∥ ⩽ γ(ω){β(ω) ∥x2 − T (ω, x1)∥

+(1− β(ω)) ∥x1 − x2∥} − (1− α(ω)) ∥x1 − T (ω, x2)∥ .

Thus ω ∈
∩

x1,x2∈X
(Cx1,x2

∩A ∩B), which implies that

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B) ⊂
∩

x1,x2∈X
(Cx1,x2

∩A ∩B),

also, similar to above proof, we have∩
x1,x2∈X

(Cx1,x2
∩A ∩B) ⊂

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B),

and so ∩
x1,x2∈X

(Cx1,x2
∩A ∩B) =

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B).

Let N =
∩

s1,s2∈X
(Cs1,s2 ∩ A ∩ B), then µ(N) = 1 and for each ω ∈ N, T (ω, x) is a

deterministic continuous operator satisfying the mapping referred to in [10] and hence,
this has a wide sense solution x(ω). The randomness and measurability of x(ω) can be
proved by generating an approximating sequence of random variable xn(ω) as follows:
Let x◦(ω) be a random variable, let x1(ω) = T (ω, x◦(ω)), then it follows that x1(ω) is a
random variable, then we consider xn+1(ω) = T (ω, xn(ω)), by repeated iteration, it gives
that {xn(ω)} is a sequence of random variable convergence to x(ω). This implies that
x(ω) is measurable and unique random fixed point of T. ■

In the following theorem, we prove the stochastic version of deterministic fixed point
theorem for a general contractive mapping and some other related results.
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Theorem 3.3 Let X be a separable Hilbert space and (Ω,
∑

, µ) be a complete propa-
bility measurable space. Let T : Ω × X −→ X be a continuous operator such that for
ω ∈ Ω, T satisfy the following condition:

∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω) max

{
∥x1 − x2∥ , β(ω)2 [∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥],

γ(ω)
2 [∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥]

}
,

(3.7)
for all x1, x2 ∈ X where α(ω), β(ω) and γ(ω) are nonnegative real valued random varibles
such that β(ω), γ(ω) ∈ (0, 1), α(ω) > 0 and α(ω).β(ω), α(ω).γ(ω) < α(ω) almost surely.
Then T has a unique random fixed point in X.

Proof. Let A = {ω ∈ Ω : T (ω, x) is a continuous function of x},

B = {ω ∈ Ω : α(ω) > 0} ∩ {ω ∈ Ω : 0 < β(ω), γ(ω) < 1}

∩{ω ∈ Ω : α(ω).β(ω), α(ω).γ(ω) < α(ω)},

Cx1,x2
=


ω ∈ Ω : ∥T (ω, x1)− T (ω, x2)∥

⩽ α(ω)max

{
∥x1 − x2∥ , β(ω)2 [∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥]

, γ(ω)2 [∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥]

} .

Let S be a countable dense subset of X, we now prove that∩
x1,x2∈X

(Cx1,x2
∩A ∩B) =

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B).

Then for all s1, s2 ∈ X,

∥T (ω, s1)− T (ω, s2)∥ ⩽ α(ω)max

{
∥s1 − s2∥ , β(ω)2 [∥s1 − T (ω, s1)∥+ ∥s2 − T (ω, s2)∥]

, γ(ω)2 [∥s1 − T (ω, s2)∥+ ∥s2 − T (ω, s1)∥]

}
.

(3.8)
Now, we examine the following cases:

Case(i). Suppose

∥T (ω, s1)− T (ω, s2)∥ = α(ω) ∥s1 − s2∥ ,

now,

∥T (ω, x1)− T (ω, x2)∥ ⩽ ∥T (ω, x1)− T (ω, s1)∥+∥T (ω, s1)− T (ω, s2)∥+∥T (ω, s2)− T (ω, x2)∥

⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s2)− T (ω, x2)∥+ α(ω) ∥s1 − s2∥ . (3.9)

Using (3.2) and (3.9), we have

∥T (ω, x1)− T (ω, x2)∥ ⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s2)− T (ω, x2)∥
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+α(ω)[∥s1 − x1∥+ ∥x1 − x2∥+ ∥x2 − s2∥], (3.10)

since for a particular ω ∈ Ω, T (ω, x) is a continuous function of x, so for any ϵ > 0, there
exists δi(xi) > 0 (i = 1, 2) such that

∥T (ω, x1)− T (ω, s1)∥ <
ϵ

4
, whenever ∥x1 − s1∥ < δ1(x1), (3.11)

and

∥T (ω, x2)− T (ω, s2)∥ <
ϵ

4
, whenever ∥x2 − s2∥ < δ2(x2), (3.12)

where

δ = δ1(x1) = δ2(x2) =
ϵ

4α(ω)
, (3.13)

by choosing ρ = min(δ, ϵ
4) then from (3.10), we have

∥T (ω, x1)− T (ω, x2)∥ ⩽ ϵ

4
+

ϵ

4
+ α(ω)[

ϵ

4α(ω)
+ ∥x1 − x2∥+

ϵ

4α(ω)
]

=
ϵ

4
+

ϵ

4
+

ϵ

4
+

ϵ

4
+ α(ω) ∥x1 − x2∥ .

As ϵ > 0 is arbitrary, it follow that

∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω) ∥x1 − x2∥ . (3.14)

Case(ii). Suppose

∥T (ω, s1)− T (ω, s2)∥ =
α(ω).β(ω)

2
[∥s1 − T (ω, s1)∥+ ∥s2 − T (ω, s2)∥],

now,

∥T (ω, x1)− T (ω, x2)∥ ⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s1)− T (ω, s2)∥+ ∥T (ω, s2)− T (ω, x2)∥

⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s2)− T (ω, x2)∥

+
α(ω).β(ω)

2
[∥s1 − T (ω, s1)∥+ ∥s2 − T (ω, s2)∥]. (3.15)
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By using (3.3), (3.4) and (3.15), by routine calculation, we get

∥T (ω, x1)− T (ω, x2)∥ ⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, x2)− T (ω, s2)∥

+
α(ω).β(ω)

2
[∥s1 − x1∥+ ∥x1 − T (ω, x1)∥+ ∥T (ω, x1)− T (ω, s1)∥

+ ∥s2 − x2∥+ ∥x2 − T (ω, x2)∥+ ∥T (ω, x2)− T (ω, s2)∥]

= (1 +
α(ω).β(ω)

2
)[∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, x2)− T (ω, s2)∥]

+
α(ω).β(ω)

2
[∥s1 − x1∥+ ∥s2 − x2∥]

+
α(ω).β(ω)

2
[∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥]

< (
2 + α(ω)

2
)[∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, x2)− T (ω, s2)∥]

+
α(ω)

2
[∥s1 − x1∥+ ∥s2 − x2∥]

+
α(ω).β(ω)

2
[∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥], (3.16)

since for a particular ω ∈ Ω, T (ω, x) is a continuous function of x, so for any ϵ > 0, there
exists δi(xi) > 0 (i = 1, 2) such that

∥T (ω, x1)− T (ω, s1)∥ <
ϵ

2(2 + α(w))
, whenever ∥x1 − s1∥ < δ1(x1),

and

∥T (ω, x2)− T (ω, s2)∥ <
ϵ

2(2 + α(w))
, whenever ∥x2 − s2∥ < δ2(x2),

where

δ = δ1(x1) = δ2(x2) =
ϵ

2α(ω)
,

by choosing ρ = min(δ, ϵ
4) and from (3.16), we get

∥T (ω, x1)− T (ω, x2)∥ ⩽ ϵ

4
+

ϵ

4
+

ϵ

4
+

ϵ

4
+

α(ω).β(ω)

2
[∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥]

= ϵ+
α(ω).β(ω)

2
[∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥].

As ϵ > 0 is arbitrary, it follow that

∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω).β(ω)

2
[∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥] (3.17)
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Case(iii). Suppose

∥T (ω, s1)− T (ω, s2)∥ =
α(ω).γ(ω)

2
[∥s1 − T (ω, s2)∥+ ∥s2 − T (ω, s1)∥],

now,

∥T (ω, x1)− T (ω, x2)∥ ⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s1)− T (ω, s2)∥+ ∥T (ω, s2)− T (ω, x2)∥

⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s2)− T (ω, x2)∥

+
α(ω).γ(ω)

2
[∥s1 − T (ω, s2)∥+ ∥s2 − T (ω, s1)∥]. (3.18)

By using (3.5), (3.6) and (3.18), by routine check-up, we get

∥T (ω, x1)− T (ω, x2)∥ ⩽ ∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, s2)− T (ω, x2)∥

+
α(ω).γ(ω)

2
[∥s1 − x1∥+ ∥x1 − T (ω, x2)∥+ ∥T (ω, x2)− T (ω, s2)∥

+ ∥s2 − x2∥+ ∥x2 − T (ω, x1)∥+ ∥T (ω, x1)− T (ω, s1)∥]

= (1 +
α(ω).γ(ω)

2
)[∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, x2)− T (ω, s2)∥]

+
α(ω).γ(ω)

2
[∥s1 − x1∥+ ∥s2 − x2∥]

+
α(ω).γ(ω)

2
[∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥]

< (
2 + α(ω))

2
)[∥T (ω, x1)− T (ω, s1)∥+ ∥T (ω, x2)− T (ω, s2)∥]

+
α(ω)

2
[∥s1 − x1∥+ ∥s2 − x2∥]

+
α(ω).γ(ω)

2
[∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥],

again choose ρ = min(δ, ϵ
4) and by the same method of Case ii, we have

∥T (ω, x1)− T (ω, x2)∥ ⩽ ϵ

4
+

ϵ

4
+

ϵ

4
+

ϵ

4
+

α(ω).γ(ω)

2
[∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥]

= ϵ+
α(ω).γ(ω)

2
[∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥].

As ϵ > 0 is arbitrary, it follow that

∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω).γ(ω)

2
[∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥]. (3.19)
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Combining (3.14), (3.17) and (3.19), we get

∥T (ω, x1)− T (ω, x2)∥ ⩽ α(ω) max

{
∥x1 − x2∥ , k(ω)2 [∥x1 − T (ω, x1)∥+ ∥x2 − T (ω, x2)∥],

γ(ω)
2 [∥x1 − T (ω, x2)∥+ ∥x2 − T (ω, x1)∥]

}
.

Thus ω ∈
∩

x1,x2∈X
(Cx1,x2

∩A ∩B), which implies that

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B) ⊂
∩

x1,x2∈X
(Cx1,x2

∩A ∩B),

also, similar to above proof, we have∩
x1,x2∈X

(Cx1,x2
∩A ∩B) ⊂

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B),

and so ∩
x1,x2∈X

(Cx1,x2
∩A ∩B) =

∩
s1,s2∈X

(Cs1,s2 ∩A ∩B).

Let N =
∩

s1,s2∈X
(Cs1,s2 ∩ A ∩ B), then µ(N) = 1 and for each ω ∈ N, T (ω, x) is a

deterministic continuous operator satisfying the general contractive condition and hence,
this has a wide sense solution x(ω). The randomness and measurability of x(ω) can be
proved by generating an approximating sequence of random variable xn(ω) as follows:
Let x◦(ω) be a random variable, let x1(ω) = T (ω, x◦(ω)). Then it follows that x1(ω) is
a random variable, then we consider xn+1(ω) = T (ω, xn(ω)). By repeated iteration, it
gives that {xn(ω)} is a sequence of random variable convergence to x(ω). This implies
that x(ω) is measurable and unique random fixed point of T. ■

4. Application to a random nonlinear integral equation

In this section, we apply Theorem 3.3 to prove the existence of a solution in a Banach
space of a random nonlinear integral equation of the form:

x(t;ω) = h(t;ω) + λ(ω)

∫
S
k(t, s;ω)f(s, x(s;ω))dµ◦(s), (4.1)

where,
(i) S is a locally compact metric space with metric d on S×S, µ◦ is a complete σ−finite
measure defined on the collection of Borel subsets of S,
(ii) ω ∈ Ω, where ω is a supporting set of the probability measure space (Ω,

∑
, µ),

(iii) x(t;ω) is an unknown vector-valued random variable for each t ∈ S,
(iv) h(t;ω) is the stochastic free term defined for t ∈ S,
(v) k(t, s;ω) is the stochastic kernel defined for t and s in S,
(vi) f(t, x) is vector-valued function of t ∈ S and x.
The integral equation (4.1) in stochastic version is a similar to Fredholm integral equation
of the second kind in deterministic.
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We shall further assume that S is the union of a decreasing sequence of countable
family of compact sets {Cn} having the properties that C1 ⊂ C2 ⊂ .. and that for any
other compact set S there is a Ci which contains it (see [2]).
we will the steps of Lee and Padjett [15] with necessary modification as required for the
more general settings.

Definition 4.1 We define the space C(S,L2(Ω,
∑

, µ)) to be the space of all continuous
functions from S into L2(Ω,

∑
, µ) with the topology of uniform convergence on compacta

i.e. for each fixed t ∈ S, x(t;ω) is a vector valued random variable such that

∥x(t;ω)∥2L2(Ω,
∑

,µ) =

∫
Ω

|x(t;ω)|2 dµ(ω) < ∞.

It may be noted that C(S,L2(Ω,
∑

, µ)) is locally convex space (see [5]) whose topolo-
gies defined by a countable family of seminorms given by

∥x(t;ω)∥n = sup
t∈Cn

∥x(t;ω)∥L2(Ω,β,µ) , n = 1, 2, ..

Moreover C(S,L2(Ω,
∑

, µ)) is complete relative to this topology since L2(Ω,
∑

, µ) is
complete. We will consider the function h(t;ω) and f(t, x(t;ω)) to be in the space
C(S,L2(Ω,

∑
, µ)) with respect to the stochastic kernel. We assume that for each pair

(t, s), k(t, s;ω) ∈ L∞(Ω, β, µ) and denote the norm by

∥|k(t, s;ω)|∥ = ∥k(t, s;ω)∥L∞(Ω,
∑

,µ) = µ− ess sup
ω∈Ω

|k(t, s;ω)| .

Also we will suppose that k(t, s;ω) is such that ∥|k(t, s;ω)|∥ . ∥x(t;ω)∥L2(Ω,
∑

,µ) is µ◦-

integrable with respect to s for each t ∈ S and x(s;ω) in C(S,L2(Ω,
∑

, µ)), hence there
exists a real valued function G defined µ◦−a.e. on S, so that G(S) ∥x(s;ω)∥L2(Ω,

∑
,µ) is

µ◦−integrable so that for each pair (t, s) ∈ S × S,

∥|k(t, u;ω)− k(s, u;ω)|∥ . ∥x(u;ω)∥L2(Ω,β,µ) ⩽ G(u) ∥x(u;ω)∥L2(Ω,β,µ)

µ◦−a.e. Further, for almost all s ∈ S, then k(t, s;ω) : S → L∞(Ω,
∑

, µ) will be continu-
ous in t.

We now define the random integral operator T on C(S,L2(Ω,
∑

, µ)) by

(Tx)(t;ω) = λ(ω)

∫
S
k(t, s;ω)x(s;ω))dµ◦(s), |λ(ω)| < 1 (4.2)

where the integral is a Fredholm integral. Moreover, we have that for each t ∈ S,
(Tx)(t;ω) ∈ L2(Ω,

∑
, µ) and that (Tx)(t;ω) is continuous in mean square by Lebesgue’s

dominated convergence theorem. So (Tx)(t;ω) ∈ C(S,L2(Ω,
∑

, µ)).

Definition 4.2 [5] Let B and D be Banach spaces. The pair (B,D) is said to be ad-
missible with respect to a random operator T (ω) if T (ω)(B) ⊂ D.

Lemma 4.3 [15] The linear operator T defined by (4.2) is continuous from
C(S,L2(Ω,

∑
, µ)) into itself.
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Lemma 4.4 [15] If T is a continuous linear operator from C(S,L2(Ω,
∑

, µ)) into itself
and B,D ⊂ C(S,L2(Ω,

∑
, µ)) are Banach spaces stronger than C(S,L2(Ω,

∑
, µ)) such

that (B,D) is admissible with respect to T, then T is continuous from B into D.

Remark 3 [15] From Lemmas 4.3 and 4.4, it follows that:
(1) The operator T defined by (4.2) is a bounded linear operator from B into D.
(2) By a random solution of the equation (4.1) we will mean a function x(x;ω) in
C(S,L2(Ω,

∑
, µ)) which satisfies the equation (4.1) µ−a.e.

Now we are in a position to prove theorem concerning the existence of a random
solution of the equation (4.1) as the following:

Theorem 4.5 We consider the stochastic integral equation (4.1) subject to the following
conditions:
(a) B and D are Banach spaces stronger than C(S,L2(Ω,

∑
, µ)) such that (B,D) is

admissible with respect to the integral operator defined by (4.2),
(b) h(t;ω) ∈ D,
(c) x(t;ω) → f(t, x(t;ω)) is an operator from the set

Q(ρ) = {x(t;ω) : x(t;ω) ∈ D, ∥x(t;ω)∥D ⩽ ρ}

into the space B satisfying

∥f(t, x1(t;ω))− f(t, x2(t;ω))∥B ⩽ α(ω) max


∥x1(t;ω)− x2(t;ω)∥D ,

β(ω)
2 [∥x1(t;ω)− f(t, x1(t;ω))∥D
+ ∥x2(t;ω)− f(t, x2(t;ω))∥D],
γ(ω)
2 [∥x1(t;ω)− f(t, x2(t;ω))∥D
+ ∥x2(t;ω)− f(t, x1(t;ω))∥D]

 ,

(4.3)
for x1(t;ω), x2(t;ω) ∈ Q(ρ), where α(ω), β(ω) and γ(ω) are nonnegative real valued
random variable such that β(ω), γ(ω) ∈ (0, 1), α(ω) > 0 almost surely.
Then there exists a unique random solution of (4.1) in Q(ρ), provided α(ω).β(ω) < α(ω),
α(ω).γ(ω) < α(ω) and

∥h(t;ω)∥D + (
2 + α(ω)

2− α(ω)
)c(ω) ∥f(t; 0)∥B ⩽ ρ(1− c(ω)α(ω)

2− α(ω)
),

where c(ω) is the norm of the operator T (ω).

Proof. Define the operator U(ω) from Q(ρ) into D by

(Ux)(t;ω) = h(t;ω) + λ(ω)

∫
S
k(t, s;ω)f(s, x(s;ω))dµ◦(s).

So,

∥(Ux)(t;ω)∥D ⩽ ∥h(t;ω)∥D + c(ω) ∥f(t, x(t;ω))∥B
⩽ ∥h(t;ω)∥D + c(ω) ∥f(t; 0)∥B + c(ω) ∥f(t, x(t;ω))− f(t, 0)∥B .
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Applying condition (4.3) of this theorem, we get

∥f(t, x(t;ω))− f(t, 0)∥B ⩽ α(ω)max{∥x(t;ω)∥D ,
β(ω)

2
[∥x(t;ω)− f(t, x(t;ω))∥D + ∥f(t, 0)∥D],

γ(ω)

2
[∥x(t;ω)− f(t, 0))∥D + ∥f(t, x(t;ω))∥D]}.

By the same manner of three cases of Theorem 3.2 and by simple proof, we have

∥(Ux)(t;ω)∥D ⩽ ∥h(t;ω)∥D + c(ω) ∥f(t; 0)∥B + c(ω)α(ω)ρ < ρ from case (i), (4.4)

also,

∥(Ux)(t;ω)∥D ⩽ ∥h(t;ω)∥D+
c(ω)α(ω)

2− α(ω)
ρ+(

2 + α(ω)

2− α(ω)
)c(ω) ∥f(t, 0)∥B < ρ from cases (ii), (iii).

(4.5)
Then by (4.4) and (4.5), we have (Ux)(t;ω) ∈ Q(ρ), then for x1(t;ω), x2(t;ω) ∈ Q(ρ),
we have by condition (c)

∥(Ux1)(t;ω)− (Ux2)(t;ω)∥D = |λ(ω)|
∥∥∥∥∫

S
k(t, s;ω)[f(s, x1(s;ω)− f(s, x2(s;ω))]dµ◦(s)

∥∥∥∥
D

⩽
∥∥∥∥∫

S
k(t, s;ω)[f(s, x1(s;ω)− f(s, x2(s;ω))]dµ◦(s)

∥∥∥∥
D

since |λ(ω)| < 1

< c(ω) ∥f(t, x1(t;ω)− f(t, x2(t;ω))∥B
⩽ α(ω) max{∥x1(t;ω)− x2(t;ω)∥D ,

β(ω)

2
[∥x1(t;ω)− (Ux1)(t;ω))∥D + ∥x2(t;ω)− (Ux2)(t;ω))∥ ,

γ(ω)

2
[∥x1(t;ω)− (Ux2)(t;ω))∥D + ∥x2(t;ω)− (Ux1)(t;ω))∥D]}.

Therefore U(ω) is a random contractive nonlinear operator on Q(ρ) hence, by Theorem
3.3 there exists a random fixed point of U(ω), which is the random solution of equation
(4.1). ■

Remark 4 If we take h(t;ω) = 0 and λ(ω) = 1 in Equation (4.1), we have Fredholm
equation of the first kind. By a similar method of Theorem 4.5 there exists a random
fixed point of U(ω), which is the random solution of it.
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