بررسی سمیت غلظتهای تحت کشنده نیترات نقره بر برخی شاخص های هماتولوژی و ایمونولوژی ماهی قرمز (Carassius auratus)
محورهای موضوعی : مدیریت محیط زیستصفورا ابرقویی 1 , سید علی اکبر هدایتی 2 , رسول قربانی 3 , حامد کلنگی میاندره 4 , طاهره باقری 5
1 - دانش آموخته کارشناسی ارشد شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
2 - استادیارگروه تولید و بهره برداری آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
3 - دانشیار گروه تولید و بهره برداری تولید و بهره برداری آبزیان، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
4 - استادیارگروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
5 - استادیارگروه شیلات، دانشکده شیلات، دانشگاه گنبد کاووس، گنبد، ایران.
کلید واژه: آلودگی, ماهی قرمز, خونشناسی, نیترات نقره, سم شناسی,
چکیده مقاله :
چکیده زمینه و هدف: در میان آلاینده های فلزی، یون نقره بسیار سمی است و بالاترین درجه سمیت را در رده بندی مواد سمی به خود اختصاص داده است. امروزه ترکیبات نقره به دلیل خواص ضد میکروبی در صنایع مختلف استفاده می گردند. اما اثرات غیرقابل بازگشت فلزات سنگین غیرضروری همانند نقره، در بدن آبزیان غیر قابل بازگشت می باشد. در مطالعه حاضر به بررسی اثرات تحت کشنده نیترات نقره بر پارامترهای خون شناسی و ایمنی شناسی ماهی قرمز(Carassius auratus) به عنوان گونه مدل کپور ماهیان پرداخته شد. روش بررسی: تعداد 105 قطعه ماهی قرمز، به صورت تصادفی در 15 مخزن فایبرگلاس (400 لیتری) قرار گرفتند (12 مخزن برای غلظت های مختلف نیترات نقره و3 مخزن به عنوان گروه شاهد) و برای آزمون های بیوشیمیایی وخون شناسی تیمارها، 9 ماهی به طور تصادفی از هر تیمار انتخاب شد که به طور جداگانه در معرض غلظت های موثر ppm 01/0، 025/0، 05/0 و 1/0نیترات نقره قرارگرفتند. شاخص های مورد اندازه گیری شامل: تعداد کل گلبول های سفید (لوکوسیت)، لنفوسیت، نوتروفیل، ائوزینوفیل، تعداد کل گلبول های قرمز (اریتروسیت)، محتوای هموگلوبین، سطح هماتوکریت، حجم متوسط گلبولی (MCV)، وزن هموگلوبین داخل گلبولی (MCH)، درصد غلظت هموگلوبین داخل گلوبولی و گلوکز سرم بود. بحث و نتیجهگیری: نتایج آزمایش نشان داد که غلظت های مختلف نیترات نقره بر روی فاکتور های اریتروسیتی خون ماهی قرمز در سطح 5/0 معنی دار بود اما بر روی اغلب فاکتور های لوکوسیتی خون تاثیر چندانی نداشت که امر ممکن است به دلیل مقاوم بودن این ماهی نسبت به ماهیان دیگر باشد. در نهایت شاخص های اریتروسیتی خون می توانند به عنوان بیو مارکرهای مناسب آلودگی نقره معرفی گردند.
Background and Objective: Among metal pollutants silver ions are the most toxic forms, and have been assigned to the highest toxicity class. Today, due to the antibacterial properties of silver compounds they are used in various industries. The effects of non-essential heavy metals such as silver are irreversible on aquatic animals’ body. In the present study, the sub-ethal effects of silver nitrate on hematology and Immunology parameters of goldfish (Carassius auratus) as a model species in Cyprinidae family were investigated. Method: 105 fish werer randomly placed in 15 fiberglass tanks (400 liters); 12 tanks were used for different concentrations of silver nitrate and 3 tanks were used for control groups. The fishe of each treatment were separately exposed to effective silver nitrate concentrations of 0.01, 0.025, 0.05 and 0.1 ppm, and for hematological and biochemical test, nine fish were randomly selected from each treatment. Measured indices were total number of white blood cells (leukocytes), lymphocytes, neutrophils, eosinophil, total number of red blood cells (erythrocytes), hemoglobin content, hematocrit level, mean corpuscular volume (MCV), hemoglobin the corpuscular (MCH), hemoglobin concentration and serum glucoses. Conclusion: The results showed that different concentrations of silver nitrate influenced blood erythrocyte (P>0.05) but did not affect blood leukocyte, which may be due to the resistance of the gold fish compared to others. Blood could be introduced as a suitable biomarker of silver pollution.
1- تربالی. ندا، بهاو.ر مائده، عین اللهی. ناهید، نباتچیان. فریبا، بررسی اثر نیترات نقره بر فعالیت آنزیم پرا کسیداز ترب کوهی، 1391، مجله علمی پژوهشی فیض، دانشگاه علوم پزشکی کاشان، صص713-714.
2- Boenigk, Jens, et al. "Effects of Silver Nitrate and Silver Nanoparticles on a Planktonic Community: General Trends after Short-Term Exposure." PloS one9.4 (2014): e95340.
3- Chambers, C.W., Proctor, C.M., Kabler, P.W., 1962. Bactericidal effect of low concentrations of silver. American Water Works Association 54, 208–216.
4- Yahya, M.T., Straub, T.M., Gerba, C.P., 1992. Inactivation of coliphage MS-2 and poliovirus by copper, silver, and chlorine. Canadian Journal of Microbiology 38, 430–435.
5- Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W. ... & Yang, X. 2007. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology, 18(28), 285604.
6- Davies, P.H., Goettl, Jr., J.P. And Sinley, J.R., 1978. Toxicity of silver to rainbow trout (Salmo gairdneri). Water Res., 12: 113-117.
7- شاهسونی. داور، مهری. مهرداد، نظری. کوروش 1382. بررسی تأثیر ماده شوینده آنیونی (شامپو) بر پارامترهای خونی ماهی حوض (Carassius auratus) پژوهش و سازندگی.
8- Bhagwant, S.and Bhikagee, M. 2000. Induction of hypochromic Macrocytic Anemiain Oreohromis hybrid (Cichlidae) exposed to 100mg/L (sub lethal dose) of Aluminum. Science and Technology- Research Journal.
9- Lee, L.E., Caldwell, S.J. and Gibbons, J. 1997. Development of a cell line from skin of goldfish (Carassius auratus), and effects of ascorbic acid on collagen deposition. Histochemistry and Cell Biology. 29: 31–43.
10- Mojabi, A. (2000). Veterinary clinical biochemistry. Noorbakhsh Press, Tehran, Iran, 477, 479. (In Persian).
11- Luskova, V., Halacka, K., & Lusk, S. 1995. Dynamics of the haemogram in the nase, Chondrostoma nasus. Folia Zoologica, 44, 69-74.
12- Stoskopf, M.A. 1993. Fish medicine. Sounders Company, U.S.A, 882p.
13- Cicik, B. and Engin, K. 2005. The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758). Turk J Vet Anim Sci. 29:113-117.
14- U.S.Environmental Protection Agency. Methods for measuring the acute toxicity of effluents and receiving waters to fresh water and marine organisms [Online]. 2002; Available from: URL:
www,water.epa.gov/scitech/methods/cwa/wet/disk2_index.cfm/
15- Rabitto, I. S., Alves Costa, J. R. M., Silva de Assis, H. C., Pelletier, E., Akaishi, F. M., Anjos, A., ... & Oliveira Ribeiro, C. A. (2005). Effects of dietary Pb (II) and tributyltin on Neotropical fish, Hoplias malabaricus: histopathological and biochemical findings. Ecotoxicology and environmental safety, 60(2), 147-156.
16- Hogstrand C, Wood C.Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 1998; 17:547–61.
17- Campbell PGC, Errécalde O, Fortin C, Hiriart-Baer VP, Vigneault B.Metal bioavailability to phytoplankton —applicability of the biotic ligand model. Comparative biochemistry and physiology. Toxicol Pharmacol CBP CBP 2002;133:189–206
18- Mueller, N. C., & Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 42(12), 4447-4453.
19- Hund-Rinke, K., Marscheider-Weidemann, F., Kemper, M., & Simon, M. (2008). Beurteilung der Gesamtumweltexposition von Silberionen aus Biozid-Produkten.UBA Texte, 43(08).
20- Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al.Toxicity of silver Nanoparticles toChlamydomonas reinhardtii. Environ Sci Technol 2008b; 42:8959–64.
21- Martins J, Oliva TL, Vasconcelos V. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int 2007; 33(3): 414-25
22- Nadafee K. Bioassay with micro organism, review article. J Shaheed Sadoughi Univ Med Sci 1995.
23- Molinero, A., & Gonzalez, J. 1995. Comparative effects of MS 222 and 2-phenoxyethanol on gilthead sea bream (Sparus aurata L.) during confinement. Comparative Biochemistry and Physiology Part A: Physiology, 111(3), 405-414
24- Shaluei, F., Hedayati, A., Jahanbakhshi, A., & Baghfalaki, M. 2012. Physiological responses of great sturgeon (Huso huso) to different concentrations of 2-phenoxyethanol as an anesthetic. Fish physiology and biochemistry, 38(6), 1627-1634
25- Casillas, E., Smith, L.S.,1974. Effects of stress on blood coagulation and haematology in rianbow trout exposed to hypoxia, J.Fish Biol. 6, 379-380.
26- Adams, S. M. 2002. Biological indicators of aquatic ecosystem stress. American Fisheries Society.
27- هدایتی. ع، جهانبخشی. ع، قادری رمازی،.ف، 1392، سم شناسی آبزیان، جلد اول، چاپ اول، صص 70_76.
28- رضایی زارچی. س،1390، اثر نانو ذرات اکسید تیتانیوم روی میزان سلولهای خونی و آنزیمهای کبدی در خون رت نژاد ویستار، مجله علمی پژوهشی دانشگاه علوم پزشکی شهید صدوقی یزد، صص 626-618.
29- Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G, Wan, L. 2006. Acute toxicological effects of copper nanoparticles in vivo. Toxicology letters, 163(2), 109-120.
_||_