حذف آلاینده فنل از محیط آبی با استفاده از نانوکامپوزیت TiO2/SBA-15 با بکارگیری روش پاسخ سطحی
محورهای موضوعی :
آب و محیط زیست
سمیرا خدابخش
1
,
لعبت تقوی
2
,
ابراهیم علایی
3
,
لیلا سمیعی
4
1 - دانش آموخته کارشناسی ارشد آلودگی های محیط زیست، دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.
2 - دانشیار گروه آلودگی های محیط زیست، دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران. *(مسؤول مکاتبات)
3 - رئیس پژوهشکده بیوتکنولوژی و محیط زیست پژوهشگاه صنعت نفت، ایران.
4 - مسؤول پروژه پردیس پژوهش و توسعه انرژی و محیط زیست پژوهشگاه صنعت نفت، ایران.
تاریخ دریافت : 1396/02/03
تاریخ پذیرش : 1396/03/17
تاریخ انتشار : 1399/10/01
کلید واژه:
فنل,
نانوکامپوزیت Tio2/SBA-15,
فرایند هتروژن فوتوکاتالیست,
روش پاسخ سطحی,
چکیده مقاله :
زمینه و هدف: ترکیبات فنلی یکی از مهم ترین مواد آلاینده هستند که موجب سمی شدن منابع آب می گردند. حضور فنل و مشتقات آن در آب و فاضلاب به دلیل سمیت و تهدیدی که برای زندگی انسان، حیوان و محیط ایجاد می کند یک نگرانی عمده محسوب می شود. به هر- حال شناخت و ردیابی این آلاینده ها و همچنین شناخت راه های کنترل و حذف آن ها امری بسیار مهم برای حفظ محیط زیست، تصفیه انواع فاضلاب و تأمین آب آشامیدنی سالم و بهداشتی می باشد. لذا این تحقیق با هدف اصلی حذف آلاینده فنل از محیط آبی با غلظت اولیه بالا(mg/l100) توسط فرایند هتروژن فوتوکاتالیست در راکتور با پوشش شیشه ای پیرکس با بستر شبه مایع انجام یافت.روش بررسی: ابتدا آنالیز پاسخ سطحی برای نانوکاتالیست TiO2 به همراه هیدروژن پراکسید و اشعه UV 250 وات، برای یافتن شرایط بهینه حذف فنل از محیط آبی به روش هتروژن فوتوکاتالیست انجام شد.سپس جاذب SBA-15 که به دلیل ساختار متخلخل قابلیت زیادی در حذف آلاینده فنل در میان سایر جاذب ها دارد و سپس نانوکامپوزیت TiO2/SBA-15 سنتز شد. سپس ویژگی های ساختاری و فیزیکی نانوکامپوزیت توسط آنالیزهایTEM ، FESEM، BET ، XRD شناسایی شد.یافته ها:نتایج بیان گر کارایی حذف 96% فنل با غلظت mg/l100 در مدت زمان 420 دقیقه بود.استفاده از روش پاسخ سطحی برای تعیین شرایط بهینه یکی از روش های مؤثر برای دست یابی به هدف مورد نظر در این تحقیق بود.بحث و نتیجه گیری: با توجه به نتایج، ملاحظه می شود که مواد مزو متخلخل پریودیک حاوی TiO2 در مقایسه با TiO2 پشتیبانی نشده راندمان بالایی در تخریب فوتوکاتالیزوری آلاینده های آبی دارد.
چکیده انگلیسی:
Background and Objective: Phenolic compounds are one of the most important pollutants that poison water resources. Presence of phenol and its derivatives in water and wastewater is a major concern due to its toxic threat to human, animals and environment. Therefore, identifying and tracking these pollutants as well as identifying ways to control and eliminate them is very important in order to protect the environment, treatment of sewage and healthy drinking water supply. In this research, the main goal is to eliminate phenol from aqueous solution,with high initial density by Heterogeneous photocatalysis in the slurry reactor with the quality of Pyrex glass.Method: First,Response Surface Methodology was used for nanocatalystTiO2with hydrogen peroxide and 250 watts UV radiation,to find optimum conditions for the removal of phenol from aqueous solution using heterogeneous photocatalysis.Then,SBA-15, which is highly capable of eliminating phenol due to its porous structure comparing to other absorbents, and then TiO2/SBA-15 were synthesized. Finally, the structure and physical properties of Nano composite were detected by analysis XRD, BET, FESEM, and TEM. Findings: Results of phenol elimination out of aqueous solutions by Heterogeneous photo catalyst and Phenol removal efficiency of 96% at a concentration of 100mg / l at the time of 420 minutes, respectively. Use of Response Surface Methodology to determine optimal conditions is one of the most effective methods to achieve the desired goal in this study.Discussion and Conclusion: According to the results, mesoporous materials containing TiO2 compared with pureTiO2,have high efficiency in photocatalytic degradation of water pollutants.
منابع و مأخذ:
Owa.F.W.2014. Water pollution: sources, effects, control and management, International Letters of Natural Sciences Vol. 8,pp 1-6.
Erfan manesh. Majid ,Afuni. Majid. 1390. Environmental Pollution “water, soil, air”, Arkan danesh publication, 7th edition. (In Persian)
Darayi. Hasti, Kamali. Hossein. 1392. Zero Fe Nano particles Synthesis & Evaluation of their performance in removal of Phenol & 2-chlorophenol from aqueous, Journal of Behdasht dar Arseh, Shahid Beheshti University, School of Public Health & Safety, Series 1, Number 3. (In Persian)
Public Health Statement, phenol. 2008. Division of Toxicology and Environmental Medicine, Department of Health and Human Services, Public Health Service,Agency for Toxic Substances and Disease Registry.
Saeidi. Mohsen, Pajoohesh far. Seyyed Pezhvak. 1386. Evaluation of Phenol Adsorption from Contaminated Water by Activated Carbon and Almond and Walnut Carbon, Journal of Environmental Science and Technology, 10th series, Number 4. (In Persian)
Andreozzi, R., Caprio, V., Insola, A., Marotta R. 1999.Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53, 51-59.
Hussain M.,Ceccarelli R., Marchisio D.L., Fino D., Russo N., Geobaldo F. 2010. Synthesis, characterization, and photocatalytic application of novel TiO2 Nanoparticles, Chemical Engineering Journal 157,45–51.
Franch, M.I., Ayllón, J.A., Domènech, X. 2004. Fe(III) photocatalyzed degradation of low chain carboxylic acids implications of the iron salt, Applied Catalysis B: Environmental 50, 89-99.
Rasalingam Shivatharsiny, Peng Rui, and Koodali Ranjit T. 2014.Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials, Journal of Nanomaterials,Volume 2014, Article ID 617405, 42 pages.
Pooretedal. Hmidreza, Keshavarz. Mohammad Hossein, 1391, Photocatalytic degradation of chemical pollutants, Malek Ashtar university publication. (In Persian)
Shokoohiyan. Mohammad, Sargolzayi. Javad, 1387, Oxidation of optical catalyst using TiO2 to treat water contaminated by organic matter, Journal of Water & Wastewater. (In Persian)
Das Lipika,Dutta Monal,Kumar Basu Jayanta.2013.Photocatalytic degradation of phenol from industrial effluent using titania-zirconia nanocomposite catalyst,International Journal of Environmental Sciences Volume 4, No. 3.
van Grieken R., Iglesias J., Morales V. and Garcia R.A. 2010.Synthesis and characterization of SBA-15 materials functionalized with olefinic groups and subsequent modification through oxidation procedures, Microporous and Mesoporous Materials 131,321-330.
Mazinani Babak,Beitollahi Ali, Masrom Abdul Kadir, Yahya Noorhana, Choong Thomas S.Y., Mohd Ibrahim Suhaina, Javadpour Jafar. 2012. Characterization and evaluation of the photocatalytic properties of wormhole-like mesoporous silica incorporating TiO2, prepared using different hydrothermal and calcination temperatures, Research on Chemical Intermediates ,October 2012, Volume 38, Issue 8, pp 1733-1742.
Umar Muhammad and Abdul Aziz Hamidi. 2013. Photocatalytic Degradation of Organic Pollutants in Water, licensee InTech,Chapter 8.
Yu C. B.,Wei C.,Lv J.,Liu H. X.,Meng L. T. 2012. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization, express Polymer Letters Vol.6, No.10, 783–793.
Yang Lili,Jiang Zeyu,Lai Sufeng,Jiang Chongwen,Zhong Hong.2014. Synthesis of Titanium Containing SBA-15 and Its Application for Photocatalytic Degradation of Phenol, International Journal of Chemical Engineering,Volume 2014 (2014), Article ID 691562.
Ahmadi. Ebrahim, Yazdi. Sousan, 1393, Producing Ti/SBA-15 Nanophotocatalyst for destructing water toxic pollutants, Journal of New technology in environmental engineering & Renewable Resources, First year, Number 2, Autumn 1393. (In Persian)
Das Lipika,Dutta Monal,Kumar Basu Jayanta.2013.Photocatalytic degradation of phenol from industrial effluent using titania-zirconia nanocomposite catalyst,International Journal of Environmental Sciences Volume4,No3.
Nickheslat Ali, Amin Mohammad Mehdi,Izanloo Hassan, Fatehizadeh Ali,Mousavi Seyed Mohammad.2013.Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide, Journal of Environmental and Public Health, Article ID 815310.
Comninellis Christos,Kapalka Agnieszka, Malato Sixto, Parsons Simon A, Poulios Ioannis and Mantzavinos Dionissios.2008.Advanced oxidation processes for water treatment: advances and trends for R&D, Journal of Chemical Technology and Biotechnology, J Chem Technol Biotechnol 83:769 – 776.
Malato, S., Blanco, J. A. , Vidal, A., Diego, A. O. , Maldonado, M. I. , Aceres, J. C. and Gernjak, W. 2003.Applied studies in solar photocatalytic detoxification: an overview, Sol. Energy 75, 329.
Grabowska Ewelina, Reszczynska Joanna, Zaleska Adriana. 2012. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review,Water research 46,5453-547I.
_||_
Owa.F.W.2014. Water pollution: sources, effects, control and management, International Letters of Natural Sciences Vol. 8,pp 1-6.
Erfan manesh. Majid ,Afuni. Majid. 1390. Environmental Pollution “water, soil, air”, Arkan danesh publication, 7th edition. (In Persian)
Darayi. Hasti, Kamali. Hossein. 1392. Zero Fe Nano particles Synthesis & Evaluation of their performance in removal of Phenol & 2-chlorophenol from aqueous, Journal of Behdasht dar Arseh, Shahid Beheshti University, School of Public Health & Safety, Series 1, Number 3. (In Persian)
Public Health Statement, phenol. 2008. Division of Toxicology and Environmental Medicine, Department of Health and Human Services, Public Health Service,Agency for Toxic Substances and Disease Registry.
Saeidi. Mohsen, Pajoohesh far. Seyyed Pezhvak. 1386. Evaluation of Phenol Adsorption from Contaminated Water by Activated Carbon and Almond and Walnut Carbon, Journal of Environmental Science and Technology, 10th series, Number 4. (In Persian)
Andreozzi, R., Caprio, V., Insola, A., Marotta R. 1999.Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53, 51-59.
Hussain M.,Ceccarelli R., Marchisio D.L., Fino D., Russo N., Geobaldo F. 2010. Synthesis, characterization, and photocatalytic application of novel TiO2 Nanoparticles, Chemical Engineering Journal 157,45–51.
Franch, M.I., Ayllón, J.A., Domènech, X. 2004. Fe(III) photocatalyzed degradation of low chain carboxylic acids implications of the iron salt, Applied Catalysis B: Environmental 50, 89-99.
Rasalingam Shivatharsiny, Peng Rui, and Koodali Ranjit T. 2014.Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials, Journal of Nanomaterials,Volume 2014, Article ID 617405, 42 pages.
Pooretedal. Hmidreza, Keshavarz. Mohammad Hossein, 1391, Photocatalytic degradation of chemical pollutants, Malek Ashtar university publication. (In Persian)
Shokoohiyan. Mohammad, Sargolzayi. Javad, 1387, Oxidation of optical catalyst using TiO2 to treat water contaminated by organic matter, Journal of Water & Wastewater. (In Persian)
Das Lipika,Dutta Monal,Kumar Basu Jayanta.2013.Photocatalytic degradation of phenol from industrial effluent using titania-zirconia nanocomposite catalyst,International Journal of Environmental Sciences Volume 4, No. 3.
van Grieken R., Iglesias J., Morales V. and Garcia R.A. 2010.Synthesis and characterization of SBA-15 materials functionalized with olefinic groups and subsequent modification through oxidation procedures, Microporous and Mesoporous Materials 131,321-330.
Mazinani Babak,Beitollahi Ali, Masrom Abdul Kadir, Yahya Noorhana, Choong Thomas S.Y., Mohd Ibrahim Suhaina, Javadpour Jafar. 2012. Characterization and evaluation of the photocatalytic properties of wormhole-like mesoporous silica incorporating TiO2, prepared using different hydrothermal and calcination temperatures, Research on Chemical Intermediates ,October 2012, Volume 38, Issue 8, pp 1733-1742.
Umar Muhammad and Abdul Aziz Hamidi. 2013. Photocatalytic Degradation of Organic Pollutants in Water, licensee InTech,Chapter 8.
Yu C. B.,Wei C.,Lv J.,Liu H. X.,Meng L. T. 2012. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization, express Polymer Letters Vol.6, No.10, 783–793.
Yang Lili,Jiang Zeyu,Lai Sufeng,Jiang Chongwen,Zhong Hong.2014. Synthesis of Titanium Containing SBA-15 and Its Application for Photocatalytic Degradation of Phenol, International Journal of Chemical Engineering,Volume 2014 (2014), Article ID 691562.
Ahmadi. Ebrahim, Yazdi. Sousan, 1393, Producing Ti/SBA-15 Nanophotocatalyst for destructing water toxic pollutants, Journal of New technology in environmental engineering & Renewable Resources, First year, Number 2, Autumn 1393. (In Persian)
Das Lipika,Dutta Monal,Kumar Basu Jayanta.2013.Photocatalytic degradation of phenol from industrial effluent using titania-zirconia nanocomposite catalyst,International Journal of Environmental Sciences Volume4,No3.
Nickheslat Ali, Amin Mohammad Mehdi,Izanloo Hassan, Fatehizadeh Ali,Mousavi Seyed Mohammad.2013.Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide, Journal of Environmental and Public Health, Article ID 815310.
Comninellis Christos,Kapalka Agnieszka, Malato Sixto, Parsons Simon A, Poulios Ioannis and Mantzavinos Dionissios.2008.Advanced oxidation processes for water treatment: advances and trends for R&D, Journal of Chemical Technology and Biotechnology, J Chem Technol Biotechnol 83:769 – 776.
Malato, S., Blanco, J. A. , Vidal, A., Diego, A. O. , Maldonado, M. I. , Aceres, J. C. and Gernjak, W. 2003.Applied studies in solar photocatalytic detoxification: an overview, Sol. Energy 75, 329.
Grabowska Ewelina, Reszczynska Joanna, Zaleska Adriana. 2012. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review,Water research 46,5453-547I.