پایش تغییرات سی ساله پوشش اراضی با استفاده از سنجش از دور و سامانه اطلاعات جغرافیایی GIS (مطالعه موردی: حوضه آبخیز قره سو، اردبیل)
محورهای موضوعی : سیستم اطلاعات جغرافیاییفرشته نامدار 1 , شهلا محمودی 2 * , اباذر اسمعلی عوری 3 , ابراهیم پذیرا 4
1 - دانشجوی دکتری علوم خاک، گروه علوم خاک، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران.
2 - استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران. *(مسوول مکاتبات)
3 - دانشیار گروه علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
4 - استاد گروه علوم خاک، گروه علوم خاک؛ دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران.
کلید واژه: سنجش از دور, حوضه آبخیز قره سو, تصاویر ماهوارهای, تغییرات پوشش اراضی,
چکیده مقاله :
زمینه و هدف: مطالعه میزان تغییرات و تخریب منابع در سال های گذشته می تواند در برنامه ریزی جهت استفادة بهینه از آن و کنترل و مهار تغییرات غیر اصولی در آینده گام مهمی به شمار آید. از آنجا که این تغییرات در سطوح وسیع و گسترده اتفاق می افتد، تکنولوژی سنجش از دور ابزاری ضروری و ارزشمند جهت پایش تغییرات می باشد. هدف از تحقیق حاضر، پایش تغییرات پوشش اراضی در حوضه آبخیز قره سو در استان اردبیل با تکنیک سنجش از دور است. روش بررسی: دراین تحقیق تغییرات پوشش اراضی طی سی سال از سال 1365 الی 1395 مورد پایش قرار گرفت.ابتدا تصاویر ماهواره لندست مربوط به ماه جولای سال های 1985، 2000 و 2015 تهیه و پس از تصحیح هندسی و ارتفاعی، طبقه بندی تصاویر به روش نظارت شده با متد حداکثر احتمال انجام پذیرفت. به منظور افزایش دقت طبقه بندی از شاخص NDVI، DEM و لایه شیب استفاده شد و دقت طبقه بندی با شاخص کاپا و صحت کلی مورد بررسی قرار گرفت. یافته ها: بر اساس نتایج در دوره اول (1380-1365) 43/20 درصد، در دوره دوم (1395-1380) 426/41 درصد و در سی سال (1395-1365) 99/27 درصد از منطقه دچار تغییر کاربری شده است که در هر سه دوره تغییرات کاربری زراعت دیم بیشترین مقدار را دارد. بحث و نتیجه گیری: نتایج تحقیق حاضر نشان دهنده این امر است که علیرغم بالا بودن قدرت تصاویر ماهواره لندست در تهیه نقشه کاربری اراضی، می توان با استفاده از شاخص ها و لایه های جانبی نظیر NDVI، ارتفاع و درصد شیب قدرت تفکیک کاربری ها از یکدیگر را بهبود بخشید.
Background and Objective: Studying the extent of change and destruction in resources in previous can contribute to efficient planning and utilization of these resources and limiting similar adverse changes in the future. Since changes in resources occur over large expanses of land, remote sensing technology can serve as a essential and valuable tool for monitoring these changes. The purpose of this study was to monitor the land cover changes in Qaresu watershed in Ardabil province using the remote sensing technique. Methods: In this study land cover changes was consulted in 30 years from 1985 to 2015. Landsat images of the study area pertaining to July 1985, 2000 and 2015 were acquired. After geometric and elevation corrections, the images were classified by the supervised approach using the maximum likelihood method. The NDVI index, DEM, and slope layers were used to enhance the image classification accuracy. Classification accuracy was assessed with Kappa index and overall accuracy indexes. Findings: The results showed 20.43% change in the watershed’s land uses over the period from 1985 to 2000, 41.426% over the period from 2000 to 2015, and 27.99% over the period from 1985 to 2015. In all three periods, the greatest changes were in dry farming. Discussion and Conclusion: Results showed despite high capability of Landsat images in mapping land use, using additional layers like NDVI, elevation and slope percent can improve separation accuracy of land using.
- Chen, X., Vierling, L., Deering, D., 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98(1), pp. 63-79.
- Garagozlo, Ali Reza, Nori kermani, Ali, Keshmiri, Zahra, 2009. Evaluation of changes and analysis of urban development using satellite datas with high separation and GIS/ RS (case study: 5 region Tehran municipality). Environment Science and Technology, Year 11, No. 1. (In Persian)
- Xian, G., Homer, C., Fry, J., 2009. Updating the 2001 National Land Cover Databaseland cover classification to 2006 by using Landsat imagery change detectionmethods. Remote Sensing of Environment, 113, pp. 1133–1147.
- Mohammady, Majid, Moradi, Hamid Reza, Zeinivand, Hosein, 2015. A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran. International Journal of Environment Science and Technology, 12: pp. 1515–1526.
- Yuan, F.K.E., Sawaya, B.C., Loeffelholz, M. E., 2005. Land cover classification and change analysis of the Twin (Minnesota) Metropolitan Area by multi temporal Landsat remote sensing. Remote sensing of Environment, 95: pp. 317-328.
- Sangari, Saleh, Bromand, Naser, 2013. Investigating land use/ cover changes in past 30 years using RS (Case study: Zarand region in Kerman Provence). Journal of Application of RS and GIS in Natural Resources, Year 4, No .1, pp. 56-67. (In Persian)
- Mathers, P., 2005. Computer Processing of Remotely- Sensed Images. John Wiley & Sons, 345 pp.
- Elcavy, O., Rod, J., Ismail, H., Suliman, A., 2011. Land use and land cover changes detections in the western Nile delta of Egypt using remote sensing data. Applied geography, 31(2011), pp. 483-494.
- Lu, D., Mausel, P., Brondizio, E., Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing, 25(12), pp. 2365-2407.
- Kalarestagi, Ahmad, Ahmadi, Hasan, Jafari, Mohammad, Ghodosi, Jamal, 2008. Prediction of probable changes jungle to Dry Farming using Maximum Likelihood method in Ferim Sahra watershed in Mazandaran provence. Journal of Search and Development, year 21, No. 3, pp. 52-63. (In Persian)
- Rajesh, B., Yuji, M., 2006. Land use change analysis using remote sensing and GIS: A case study of Kathmandu Metropolitan, Nepal. Research Abstracts on Spatial Information Science CSIS DAYS: 1.
- Jensen, J.R., Cowen, D.C., 1999. Remote sensing of urban suburban infrastructure and socio-economic attributes. Photogram Engineering, Remote Sensing, 65, pp. 611–622.
- Hathout, S., 2002. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66, pp. 229–238.
- Fatemitalab, Seid Reza, Madanipour kermanshahi, Morteza, Hashemi Seid Armin, 2015. Estimate of cover changes in Rodsar Jungle using neural network techniques and maximum likelihood method. Remote Sensing and GIS in Natural Resources, Year 6, No .2. (In Persian)
- Moradi, Ali Reza, Arzani, Mohammad, Ebrahimi, Hosein, 2016. Assessment change of Rangeland to Dry Farming using satellite images and GIS. Remote Sensing and GIS in Natural Resources, Year 7, No .1. (In Persian)
- Waseem, M., Paul, H., Jeffrey, G., Boshra, H., Salem, B., 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63 (2015), pp. 101-112.
- Maimaitijiang, M., Ghulam, A., Onésimo Sandoval, J.S., 2015. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. International Journal of Applied Earth Observation and Geo information, 35 (2015), pp. 161–174.
- Xiao, T.Y., Huiping, L.X., 2015. Land cover changed object detection in remote sensing data with medium spatial resolution. International Journal of Applied Earth Observation and Geo Information, 38, (2015), pp. 129–137.
- Jafarnia, Shahram, Oladi, Jafar, Hojati, Seid Mohammad, Mirakhorlo, Khosro, 2016. Assessment of situation and detection of changes in Mangro Jungle in Gheshm Island using satellite images in 1988- 2008. Environment Science and Technology, Year 18, No. 1. (In Persian)
- Rahdari, Vahid, Safianian, Ali Reza, Maleki, Saeedeh, Khagealdin, Seid Jamaladin, Rahdari, Meisam, 2016. Preparation land use and land cover maps using satellite datas and GIS (Case study: Moteh wildlife shelter). Environment Science and Technology, Year 18, No. 1. (In Persian)
- Bureau of Natural Resources and Watershed Management of Ardabil Provence. 2018. Reports on the master study of Qaresu watershed in Ardabil. (In Persian)
_||_
- Chen, X., Vierling, L., Deering, D., 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98(1), pp. 63-79.
- Garagozlo, Ali Reza, Nori kermani, Ali, Keshmiri, Zahra, 2009. Evaluation of changes and analysis of urban development using satellite datas with high separation and GIS/ RS (case study: 5 region Tehran municipality). Environment Science and Technology, Year 11, No. 1. (In Persian)
- Xian, G., Homer, C., Fry, J., 2009. Updating the 2001 National Land Cover Databaseland cover classification to 2006 by using Landsat imagery change detectionmethods. Remote Sensing of Environment, 113, pp. 1133–1147.
- Mohammady, Majid, Moradi, Hamid Reza, Zeinivand, Hosein, 2015. A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran. International Journal of Environment Science and Technology, 12: pp. 1515–1526.
- Yuan, F.K.E., Sawaya, B.C., Loeffelholz, M. E., 2005. Land cover classification and change analysis of the Twin (Minnesota) Metropolitan Area by multi temporal Landsat remote sensing. Remote sensing of Environment, 95: pp. 317-328.
- Sangari, Saleh, Bromand, Naser, 2013. Investigating land use/ cover changes in past 30 years using RS (Case study: Zarand region in Kerman Provence). Journal of Application of RS and GIS in Natural Resources, Year 4, No .1, pp. 56-67. (In Persian)
- Mathers, P., 2005. Computer Processing of Remotely- Sensed Images. John Wiley & Sons, 345 pp.
- Elcavy, O., Rod, J., Ismail, H., Suliman, A., 2011. Land use and land cover changes detections in the western Nile delta of Egypt using remote sensing data. Applied geography, 31(2011), pp. 483-494.
- Lu, D., Mausel, P., Brondizio, E., Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing, 25(12), pp. 2365-2407.
- Kalarestagi, Ahmad, Ahmadi, Hasan, Jafari, Mohammad, Ghodosi, Jamal, 2008. Prediction of probable changes jungle to Dry Farming using Maximum Likelihood method in Ferim Sahra watershed in Mazandaran provence. Journal of Search and Development, year 21, No. 3, pp. 52-63. (In Persian)
- Rajesh, B., Yuji, M., 2006. Land use change analysis using remote sensing and GIS: A case study of Kathmandu Metropolitan, Nepal. Research Abstracts on Spatial Information Science CSIS DAYS: 1.
- Jensen, J.R., Cowen, D.C., 1999. Remote sensing of urban suburban infrastructure and socio-economic attributes. Photogram Engineering, Remote Sensing, 65, pp. 611–622.
- Hathout, S., 2002. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66, pp. 229–238.
- Fatemitalab, Seid Reza, Madanipour kermanshahi, Morteza, Hashemi Seid Armin, 2015. Estimate of cover changes in Rodsar Jungle using neural network techniques and maximum likelihood method. Remote Sensing and GIS in Natural Resources, Year 6, No .2. (In Persian)
- Moradi, Ali Reza, Arzani, Mohammad, Ebrahimi, Hosein, 2016. Assessment change of Rangeland to Dry Farming using satellite images and GIS. Remote Sensing and GIS in Natural Resources, Year 7, No .1. (In Persian)
- Waseem, M., Paul, H., Jeffrey, G., Boshra, H., Salem, B., 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63 (2015), pp. 101-112.
- Maimaitijiang, M., Ghulam, A., Onésimo Sandoval, J.S., 2015. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. International Journal of Applied Earth Observation and Geo information, 35 (2015), pp. 161–174.
- Xiao, T.Y., Huiping, L.X., 2015. Land cover changed object detection in remote sensing data with medium spatial resolution. International Journal of Applied Earth Observation and Geo Information, 38, (2015), pp. 129–137.
- Jafarnia, Shahram, Oladi, Jafar, Hojati, Seid Mohammad, Mirakhorlo, Khosro, 2016. Assessment of situation and detection of changes in Mangro Jungle in Gheshm Island using satellite images in 1988- 2008. Environment Science and Technology, Year 18, No. 1. (In Persian)
- Rahdari, Vahid, Safianian, Ali Reza, Maleki, Saeedeh, Khagealdin, Seid Jamaladin, Rahdari, Meisam, 2016. Preparation land use and land cover maps using satellite datas and GIS (Case study: Moteh wildlife shelter). Environment Science and Technology, Year 18, No. 1. (In Persian)
- Bureau of Natural Resources and Watershed Management of Ardabil Provence. 2018. Reports on the master study of Qaresu watershed in Ardabil. (In Persian)