بررسی تغییرات دمای سطحی زمین با استفاده ازمدل کین و شاخص های سیمای سرزمین (مطالعه موردی: شهر قزوین)
محورهای موضوعی : سیستم اطلاعات جغرافیاییریحانه اسدی لطفی 1 * , علی رضا وفایی نژاد 2 , علی اصغر آل شیخ 3 , زهرا چترسیماب 4
1 - دانشجوی دکتری تخصصی رشته سنجش از دور و سیستمهای اطلاعات جغرافیایی دانشکده منابع طبیعی و محیط زیست، واحدعلوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. *(مسوول مکاتبات)
2 - دانشیار دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران
3 - استاد گروه مهندسی نقشه برداری، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران.
4 - دانشجوی دکتری تخصصی رشته سنجش از دور و سیستم¬های اطلاعات جغرافیایی دانشکده منابع طبیعی و محیط زیست، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: جزایر حرارتی شهری, دمای سطحی زمین, مدل Qin , پوشش اراضی, شهر قزوین.,
چکیده مقاله :
زمینه و هدف: دمای سطحی زمین[1] یکی از پارامترهای مهم مربوط به انرژی سطحی و تعادل آب وهوایی در مقیاس محلی و جهانی است. جزایر حرارتی شهری درنتیجه فاکتورهای مختلفی بوجود میآید که ویژگی های دمایی مواد پوشاننده سطح زمین یکی از مهمترین عوامل هستند. هدف یافتن ارتباط بین دمای سطحی و پوشش اراضی است.
روش بررسی: با استفاده از تجزیه و تحلیل تصاویر ماهواره لندست 5 و سنجنده TM برای سه دوره زمانی 1989، 1999 و 2009 دمای سطحی زمین در محدوده شهر قزوین با استفاده ازمدلQin2001 محاسبه شد؛ پس از نرمالسازی دما بر اساس میانگین و انحراف معیار در 4 طبقه دمایی پهنه بندی گردید و پوشش اراضی در سه دوره زمانی 3 طبقه اراضی شهری، کشاورزی و بایر استخراج شد.
یافتهها: با توجه به تغییرات روزانه و فصلی برآورد میزان دمای سطحی متفاوت است برای این منظور از نرمالسازی دما استفاده شد. میزان همبستگی بین دمای سطحی و دمای هوا در 77/0 میباشد. به منظور کمی سازی رابطه بین تغییرات دمای و پوشش اراضی از سنجههای سیمای سرزمین شامل تعداد لکه، تراکم لکه، مساحت و نسبت محیط به مساحت استفاده شد که گویای تغییرات دمای سطح زمین با پوشش اراضی است.
بحث و نتیجه گیری: بیشترین دمای سطحی برای کاربری شهرک صنعتی در حومه و داخل شهر قزوین با بیشترین میزان تعدادلکه و تراکم لکه برآورد شد و فضای سبز و اراضی کشاورزی کمترین میزان دما را دارد. اراضی بایر به دلیل عدم پوشش گیاهی مناسب و همچنین کاهش تبخیر و تعرق سطحی دارای دمایی بالایی است.
Background and Objectives: Surface temperature is one of the important parameters of surface energy and climate balance on a local and global scale. Urban heat islands occur as a result of various factors, which comes to thermal characteristics of the material covering the surface of the Earth is one of the most important factors. The aim is to find the relationship between surface temperature and land cover.
Material and Methodology: with image priccessing of Landsat 5 Thematic Mapper (TM) for the three periods of 1989, 1999, and 2009, the surface temperature of the land in the city of Qazvin was calculated using the Qin2001 model; after normalizing the temperature based on the average and standard deviation of 4 floors the temperature was determined. After zoning of temperature, land cover was extracted in three periods of time in three categories: urban, agricultural and Bear lands.
Finding: Regarding the daily and seasonal variations, the surface temperature is different. The correlation between surface temperature and air temperature is 0.77. Temperature was normalized then to quantify the relationship between temperature and land cover changes was used landscape Index such as the number of Pach, Pach density, area Pach and perimeter of the area.
Discussion and Conclusion: The highest surface temperature for industrial use in the suburbs and inside of Qazvin city with the highest number and density pach was estimated and agricultural lands have the lowest temperature. Bare lands are high due to the lack of appropriate vegetation and also the reduction of Evaporation and transpiration
1. Mitraka Z, Chrysoulakis N, Doxani G, Del Frate F, Berger M. Urban Surface Temperature Time Series Estimation at the Local Scale by Spatial-Spectral Unmixing of Satellite Observations. Remote Sensing. 2015;7(4).
2. Accuracy of sea ice temperature derived from the advanced very high resolution radiometer. Journal of Geophysical Research: Oceans. 1995;100(C3):4525-32.
3. Khandelwal S, Goyal R, Kaul N, Mathew A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science. 2018;21(1):87-94.
4. Li ZL, Wu H, Duan SB, Zhao W, Ren H, Liu X, et al. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Reviews of Geophysics. 2023;61(1).
5. Li Z-L, Tang B-H, Wu H, Ren H, Yan G, Wan Z, et al. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment. 2013;131:14-37.
6. Mojarrad, Fi., Climate and Environmental Crises, Tahibastan Publications, Razi University, Faculty of Literature, Kermanshah.(2015). (In Persian)
7. Li, Bo-Hui Tang, Hua Wu, Huazhang Ren, Guangjian Yan, zhengming Wan, IsabelF.Trigo and Jose A. Sobrino, (2013),'' Satellate- derived land surface temperature: current statuse and perspectiveszhao-liange '', Remote Sensing of Enviorment, NO.131,PP.14-37.
8. Haashemi S, Weng Q, Darvishi A, Alavipanah KS. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sensing. 2016;8(4).
9. Alavi Panah, Sayed Kazem. Thermal Remote sensing and its Application in Earth Sciences. Tehran, Iran. Publications of the University of Tehran(7),2006. Volume I, Chapter II.. (In Persian)
10. Ashraf, B., et .al , ''The Investigation of Mashhad’s Heat Island Using Satellite Images and Applying Fractal Theory'', GEOGRAPHY AND ENVIRONMENTAL HAZARDS, 2012, NO. 1 , PP.17-34. (In Persian)
11. Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research. 1975;80(36):5113-7.
12. Balling RC, Brazel SW. High-resolution surface temperature patterns in a complex urban terrain. Photogrammetric Engineering and Remote Sensing. 1988 Sep;54(9):1289-1293
13. Zhangyan , J., C. Y. L. J. (2006). ''On urban heat island of Beijing based on landsat TM data.'' Geo-spatial Information Science, 9(4), 293-297
14. Laosuwan.T,Sangpradit., ''Urban heat island monitoring and analysisby using integration of satellite data and knowledge based method'', (2012), International Journal of. Development and Sustainability, Vol. 1 No. 2, pp. 99–110
15. Li, Zh., Tang, Bo-Hui, B.H., Wu,H., Ren,H., Yan,G., Wan,Zh.,Trigo,I, Sobrino,A.J,'' Satellate- derived land surface temperature: current statuse and perspectives '', Remote Sensing of Enviorment,(2013), NO. 131, PP.14-37.
16. Valizadeh, Kh ., et.al, ''Estimation land surface temperature and extract heat islands using split window algorithm and multivariate regression analysis (Case Study of Zanjan)'', Journal Management system,(2017), NO. 30, PP.35-50. (In Persian)
17. Rozenstein O, Qin Z, Derimian Y, Karnieli A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors. 2014;14(4).
18. Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing. 2001;22(18):3719-46.
19. Grover A, Singh BR. Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. Environments. 2015;2(2).
20. Sadeghinia, A.,et.al ''Analysis of Spatial - Temporal Structure of the Urban Heat Island in Tehran through Remote Sensing and Geographical Information System'', GEOGRAPHY AND ENVIRONMENTAL HAZARDS, (2012) , Vol 1, No 4 PP. 1-17. (In Persian)
21. Dervishsefat , A," Estimation of the accuracy of the GIS database thematic maps" The 5th GIS Conference, (1998), Tehran, Iran. (In Persian)
22. Dervishsefat , A, Estimation of the accuracy of the GIS database thematic maps. The 5th GIS Conference, (1998), Tehran, Iran. (In Persian)
23. Lin J, Qiu S, Tan X, Zhuang Y. Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Building and Environment. )2023(; 228:109910.