پهنهبندی نوسانات کیفی فاضلاب در شبکه جمعآوری شهر بیرجند
محورهای موضوعی : راه حل های موثر و قابل توسعه برای کنترل و حذف آلودگی های محیطی
هومن بهمن پور
1
*
,
فرخنده احراری
2
1 - گروه مهندسی ایمنی، بهداشت و محیط زیست (HSE)، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
2 - کارشناس ارشد مهندسی شیمی، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
کلید واژه: شبکه فاضلاب, درونیابی, پهنهبندی فاضلاب, شهر بیرجند,
چکیده مقاله :
هدف از این تحقیق، بررسی وضعیت کیفی شبکه فاضلاب شهر بیرجند و ترسیم مدل پهنهبندی مربوط به آن بوده است. در طی سه دوره نمونهبرداری، ۱۰ پارامتر کیفی در 19 نقطه از شبکه فاضلاب شهری اندازهگیری شد. پس از تحلیل آماری دادهها به منظور استفاده از روشهای درونیابی، تحلیل واریوگرام با استفاده از نرمافزار GS+ انجام شد و با استفاده از نرمافزار ArcGIS 10.1 و جعبه ابزار Geostatistical Analyst پهنهبندی مناسب با استفاده از روشCross Validation انجام گرفت. به منظور انتخاب روش مناسب بین دادههای برآورد شده در شبکه فاضلاب با مقادیر واقعی آنها از دو روش آماری تحلیل حساسیت انجام پذیرفت. همبستگی میان دادهها به روش اسپیرمن صورت گرفت که در کلیه موارد دقت روش بیزین کریجینگ را در پهنهبندی بالاتر از سایر روشها برآورد نمود. نتایج نشان داد دو پارامتر نیتریت و هدایت الکتریکی روند کاهشی و سایر پارامترها روند افزایشی داشتهاند. نتایج پهنهبندی با استفاده از روش کریجینگ بیزین در شبکه فاضلاب حاکی از بالا بودن غلظت BOD و COD در منطقه شمال شهر، بالا بودن میزان EC، افزایش نیترات، کاهش نیتریت، بالا بودن TDS و pH در انتهای شبکه فاضلاب بود. براساس نتایج بالا بودن غلظت BOD و COD در شبکه فاضلابرو مشخص میشود که تجزیه مواد آلی به کندی انجام شده و به منظور تسریع بخشیدن در تجزیه بیولوژیکی اعمال راهکارهای مدیریتی به ویژه اصلاحات در سیستم هیدرولیکی در شبکه فاضلاب شهر بیرجند بسیار ضروری و مهم میباشد تا از این طریق بتوان فرآیند تصفیه را زودتر آغاز کرد.
This research aimed to investigate the quality status of the Birjand city wastewater network and develop a zoning model. Over three sampling periods, 10 quality parameters were measured at 19 points within the urban wastewater network. Following statistical analysis, variogram analysis was conducted using GS+ software to facilitate interpolation methods. Appropriate zoning was then performed using the Cross Validation method with ArcGIS 10.1 software and the Geo-statistical analyst toolbox. To determine the most suitable estimation method, sensitivity analysis was conducted using two statistical approaches. Correlation analysis was performed using the Spearman method, which consistently demonstrated the superiority of the Bayesian Kriging method in zoning accuracy over other methods. The zoning results obtained through Bayesian Kriging indicated high BOD and COD concentrations in the northern region of the city, along with elevated EC levels, increased nitrate, decreased nitrite, and high TDS and pH at the endpoint of the sewage network. The presence of high BOD and COD concentrations suggests slow organic matter decomposition. To accelerate biological decomposition, implementing management solutions, particularly hydraulic system improvements in the sewage network of Birjand, is crucial to initiating the treatment process earlier.
[1] Bizier, P., 2007, Gravity sanitary sewer design and construction (ASCE manuals and reports on engineering practice no. 60 & WEF manual of practice no. FD-5), 2nd Edition, American Society of Civil Engineers (ASCE).
[2] Bahmanpour, H., 2015, Wastewater treatment, Islamic Azad University, Shahrood Branch, pp. 221. (in Persian)
[3] Gedam, A., Mangulkar, S., Gandhi, B., 2016, Prediction of sewer pipe main condition using the linear regression approach, Journal of Geoscience and Environment Protection, 4, 100.
[4] Vladeanu, G.J., Matthews, J.C., 2019, Consequence-of-failure model for risk-based asset management of wastewater pipes using AHP, Journal of Pipeline Systems Engineering and Practice, 10(2), DOI: 10.1061/(ASCE)PS.1949-1204.0000370.
[5] Guzmán-Fierror, J., Charry, S., González, I., Pena-Heredia, F., Hernandez, N., Luna-Acosta, A., Torres, A., 2020, Bayesian network-based methodology for selecting a cost-effective sewer asset management model, Water Science and Technology, 81, 2422.
[6] Kabir, G., Balek, N.B.C., Tesfamariam, S., 2018, Sewer structural condition prediction integrating bayesian model averaging with logistic regression, Journal of Performance of Constructed Facilities, 32(3), DOI: 10.1061/(ASCE)CF.1943-5509.000116.
[7] Daher, S., Zayed, T., Elmasry, M., Hawari, A., 2018, Determining relative weights of sewer pipelines’ components and defects, Journal of Pipeline Systems Engineering and Practice, 9(1), DOI: 10.1061/(ASCE)PS.1949-1204.00002.
[8] Diao, K., Sweetapple, C., Farmani, R., Fu, G., Ward, S., Butler, D., 2016, Global resilience analysis of water distribution systems, Water Research, 106, 383.
[9] Juan-Garcia, P., Butler, D., Comas, J., Darch, G., Sweetapple, C., Thornton, A., Corominas, L., 2017, Resilience theory incorporated into urban wastewater systems management, State of the art, Water Research, 115, 149.
[10] Mugume, S.N., Gomez, D.E., Fu, G., Farmani, R., Butler, D., 2015, A global analysis approach for investigating structural resilience in urban drainage systems, Water Research, 81, 15.
[11] Amini, M.R., Haji Kandi, H., 2021, Evaluation of sewage collection network vulnerability by Analytical Hierarchy Process method (Case study: sewerage collection network implemented in a part of District 5 of Tehran Municipality), Iranian Water Research Journal, 15(2), 41.
[12] Ghavami, S.M., Borzooei, Z., Maleki, J., 2020, An effective approach for assessing risk of failure in urban sewer pipelines using a combination of GIS and AHP-DEA, Process Safety and Environmental Protection, 133, 275.
[13] Güçlü, D., Dursun, Ş, 2010, Artificial neural network modeling of a large-scale wastewater treatment plant operation, Bioprocess and Biosystems Engineering, 33, 1051.
[14] Hekmatian, A., Eshtehardiha, H., 2010, Pretreatment of sewage in sewage treatment plants is a new step towards reducing costs and increasing the efficiency of sewage treatment plants, 3rd National Conference on Operation and Maintenance of Water and Waste Water Systems, Shahid Beheshti University, 23 February, Tehran, Iran. (in Persian)
[15] Hvitved-Jacobsen, T., Vollertsen, J., Nielsen, A.H., 2001, Sewer processes -microbial and chemical process engineering of sewer networks, 1st Edition, CRC Press.
[16] Liang, L.Y., Thompson, R.G., Young, D.M., 2004, Optimizing the design of sewer networks using genetic algorithms and tabu search, Engineering, Construction and Architectural Management, 11(2), 101
[17] Khani, M.R., Yaghmayian, K., Hojati, M., 2015, Wastewater engineering: Treatment and reuse (first part), (Translation), Authors: Metcalf and Eddy, 2nd Edition, Khaniran Press. (in Persian)
[18] Ranković, V., Radulović, J., Radojević, I., Ostojić, A., Čomić, L., 2010, Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia, Ecological Modeling, 221, 1239.
[19] Tabesh, M., Madani, S., 2006, A performance indicator for wastewater collection systems, Water Practice & Technology, 1(4), wpt2006079.
[20] Kamali, B., Ziaei, A.N., Beheshti, A.A., Farmani, R., 2021, Global resilience analysis in urban wastewater collection networks (Case study: Valiasr town, Torbat Heydariyeh), Journal of Hydraulics, 16(3), 55. (in Persian)
[21] Omidi Arjenaki, M., Zarif Sanayei, H.R., Heidarzadeh, H., 2021, Investigation of performance and determination of optimal dimensions of surface runoff collection network using SWMM model, Amirkabir Journal of Civil Engineering, 53, 2561. (in Persian)
[22] Abbasi, O., Hosseini, S.A., Aqebat Bekheir, H., 2023, Evaluation of the pathology of the operation of the sewer collection network with the fishbone theory approach, Journal of Resilient City, 6(2), 35. (in Persian)
[23] Vaghei, R., 2012, Investigating corrosion in sewage installations and solutions to it, Water and Wastewater Company of Southern Khorasan Province. (in Persian)
[24] Sousa, V., Ferreira, F., Almeida, N., Saldanha, J., Martins, J., Teixeira, A., 2009, A simplified technical decision support tool for the asset management of sewer networks, Water Asset Management International, 5(1), 3.
[25] Zug, M., Girard, R., Phan, L., Rossi, L., Bellefleur, D., 1998, COD modelling in sewer networks, Water Science and Technology, 38, 10, 49.
[26] Bakhshizadeh, F., Jelokhani-Niaraki, M.R., Mahmoudi, S., 2022, Production of potential blockage event map for urban sewer networks using neural network and GIS (Case study: Region 2 of ABFA of Tehran city), Journal of Water and Wastewater, 32(6), 115. (in Persian)
[27] Anderson, M.P., Woessner, W.W., Hunt, R.J., 2015, Applied groundwater modeling: Simulation of flow and advective transport, 2nd Edition, Elsevier.
[28] Herzog, A., 2007, Transient groundwater modeling in Peri-Urban Kampala, Uganda. (Master Thesis), Department of Land and Water Resource Engineering, Sweden.
[29] Pourhaghi, A., Radmanesh, F., Maleki, A., 2015, Simulation of Delfan-Lorestan aquifer and investigation of management scenarios by using MODFLOW model, Journal of Water and Soil, 29, 886. (in Persian)