بررسی کارآیی نانوذرات نیکل اکسید در حذف اسید قرمز 97 به عنوان یک آلاینده محیط زیست از محیطهای آبی
محورهای موضوعی : راه حل های موثر و قابل توسعه برای کنترل و حذف آلودگی های محیطی
1 - دانش آموخته دکتری شیمی کاربردی، دانشکده شیمی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اسید قرمز 97, جذب سطحی, نانوذرات NiO, پارامترهای عملیاتی,
چکیده مقاله :
در این کار تحقیقی حذف اسید قرمز 97 (AR97) به عنوان یک آلاینده مدل از صنایع نساجی با استفاده از نانوذرات NiO از محیطهای آبی مورد مطالعه قرار گرفته است. در ابتدا اندازه و خلوص نانوذرات NiO بهترتیب با استفاده از تکنیکهای TEM و XRD مشخص گردید. در ادامه کارایی نانوذرات NiO برای جذب سطحی و حذف AR97 مورد مطالعه قرار گرفت. نتایج نشان داد که نانوذرات NiO جاذب موثری برای حذف AR97 از محیطهای آبی میباشند. بررسی تاثیر پارامترهای عملیاتی نظیر دما، pH، مقدار جاذب و غلظت اولیه آلاینده (AR97) در کارایی جذب سطحی نانوذرات NiO مورد بررسی قرار گرفت. نتایج بهینه بدست آمده از بررسی این پارامترها (دما، pH، مقدار جاذب و غلظت اولیه AR97) به ترتیب عبارتند از C° 25، 2، g L-14 و mg L-1 10 میباشند.
This study investigates the removal of C.I. Acid Red 97 (AR97) as a model pollutant from textile industries using NiO nanoparticles in aqueous environments. The size and purity of NiO nanoparticles were initially determined using TEM and XRD techniques, respectively. The adsorption and removal efficiency of NiO nanoparticles for AR97 was then evaluated. The results indicated that NiO nanoparticles serve as effective adsorbent for AR97 removal. The effects of key operational parameters, including temperature, pH, amount of adsorbent, and initial pollutant concentration, on the adsorption efficiency of NiO nanoparticles were examined. The optimal conditions for AR97 removal were found to be a temperature of 25°C, pH of 2, adsorbent dosage of 4 g L-¹, and an initial AR97 concentration of 10 mg L-¹.
[1] Wang, W., Huang, G., An, C., Zhao, S., Chen, X., Zhang, P., 2018, Adsorption of anionic azo dyes from aqueous solution on cationic gemini surfactant-modified flax shives: Synchrotron infrared, optimization and modeling studies, Journal of Environmental Management, 172, 1986.
[2] Eskandarloo, H., 2024, A review of new methods of removing environmental pollutants: Photolysis and UV/H2O2 processes, Environmental Pollution and Sustainable Urban Development, 1(1), 1. (in Persian)
[3] Airemlou, L., 2024, Synthesis of ZnO/SnO2 nanocomposite loaded with silver via liquid impregnation method and investigation of its photocatalytic activity in removing an environmental pollutant under visible light irradiation, Environmental Pollution and Sustainable Urban Development, 1(2), 85. (in Persian)
[4] Zafari, S.H., 2024, Removal of p-nitrophenol from aqueous environments by UV/S2O82- process in a continuous photoreactor: Optimization by Taguchi method, Environmental Pollution and Sustainable Urban Development, 1(1), 33. (in Persian)
[5] Ghorbani-Khosrowshahi, S., Behnajady, M.A., 2016, Chromium (VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom, International Journal of Environmental Science and Technology, 13, 1803.
[6] Behnajady, M.A., Yavari, Sh., Modirshahla, N., 2014, Investigation on adsorption capacity of TiO2-P25 nanoparticles in the removal of a mono-azo dye from aqueous solution: A comprehensive isotherm analysis, Chemical Industry & Chemical Engineering Quarterly, 20, 97.
[7] Sattarfard, R., Behnajady, M.A., Eskandarloo, H., 2018, Hydrothermal synthesis of mesoporous TiO2 nanotubes and their adsorption affinity toward Basic Violet 2, Journal of Porous Materials, 25, 359.
[8] Behnajady, M.A., Bimeghdar, S, 2013, Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI), Chemical Engineering Journal, 239, 105.
[9] Mahmoudi, E., Behnajady, M.A., 2018, Synthesis of Fe3O4@NiO core-shell nanocomposite by the precipitation method and investigation of Cr(VI) adsorption efficiency, Colloids and Surfaces A, 538, 287.
[10] Galvani, G.M., Zito, C.A., Perfecto, T.M., Malafatti, J.O.D., Paris, E.C., Volanti, D.P., 2022, Two-dimensional NiO nanosheets for efficient Congo Red adsorption removal, Materials Chemistry and Physics, 290, 126591.
[11] Tahir, H., Anwer, M., Khan, S., Saad, M., 2024, Enhancement of adsorption and photocatalytic activity of MgO nanoparticles for the treatment of textile dye using ultrasound assisted process by Response Surface Methodology, Desalination and Water Treatment, 319, 100429.
[12] Feng, Y., Xie, T., Gong, W., Xu, J., Lu, Y., Gao, L., Xu, S., Liu, B., 2025, A novel calcination-quenching synthesis of octahedral MgO crystals with highly exposed (111) facets for enhanced adsorption performance, Separation and Purification Technology, 362, 131800.
[13] Gharbani, P., 2024, Investigating the efficiency of graphene oxide in the adsorption of 2-chlorophenol from aqueous solutions as an environmental pollutant, Environmental Pollution and Sustainable Urban Development, 1(3), 63. (in Persian)
[14] Sheela, T., Nayaka, Y.A., 2012, Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles, Chemical Engineering Journal, 191, 123.
[15] Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., Trapalis, C., 2009, Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles, Journal of Hazardous Materials, 170, 836.
[16] Rasoulifard, M.H., Haddadi Esfahlani, F., Mehrizadeh, H., Sehati, N., 2010, Removal of C.I. Basic Yellow 2 from aqueous solution by low-cost adsorbent: Hardened paste of Portland cement, Environmental Technology, 31, 277.
[17] Chowdhury, S., Mishra, R., Saha, P., Kushwaha, P., 2011, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of Malachite Green onto chemically modified rice husk, Desalination, 265, 159.