توسعه مدل تلفیقی CA-LR-Markov-Fuzzy جهت مکانیابی بهینه توسعه شهری پایدار: رویکرد مبتنی بر معیارهای زیستمحیطی در استان گیلان
محورهای موضوعی : آمایش سرزمینمیثم جعفری 1 * , دلارام سیکارودی 2 , سحر غیاث 3
1 - گروه مهندسی محیط زیست و HSE، دانشگاه آزاد اسلامی واحد نجف آباد، ایران
2 - مرکز تحقیقات محیط زیست انسانی و توسعه پایدار، (واحد نجف آباد)، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - مرکز تحقیقات محیط زیست انسانی و توسعه پایدار، (واحد نجف آباد)، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: توسعه شهری پایدار, معیارهای زیستمحیطی, مدلسازی تلفیقی, مکانیابی بهینه, اتوماتای سلولی, استان گیلان,
چکیده مقاله :
پدیده گسترش شهری بیرویه بهعنوان یکی از مهمترین چالشهای توسعه پایدار قرن بیستویکم، پیامدهای جبرانناپذیری بر اکوسیستمهای طبیعی، تنوع زیستی و کیفیت منابع طبیعی تحمیل میکند. این پژوهش با هدف توسعه چارچوب نوآورانه مکانیابی بهینه توسعه شهری مبتنی بر معیارهای زیستمحیطی در استان گیلان انجام شده است. تلفیق هوشمند چهار رویکرد پیشرفته مدلسازی شامل اتوماتای سلولی، رگرسیون لجستیک، زنجیره مارکوف و منطق فازی در قالب مدل یکپارچه CA-LR-Markov-Fuzzy طراحی و پیادهسازی شد. پس از شناسایی 23 معیار زیستمحیطی حائز اهمیت در چهار دسته فیزیوگرافی، اکولوژیک، هیدرولوژیک و اقلیمی-اجتماعی، این معیارها با استفاده از فرآیند تحلیل سلسله مراتبی و نظرسنجی 40 متخصص وزندهی گردیدند. نتایج اعتبارسنجی مدل تلفیقی عملکرد بسیار مطلوبی با شاخص ROC برابر 0.848، ضریب کاپای 0.79 و دقت کلی 84% نشان داد که در محدوده عملکرد عالی قرار میگیرد. بر اساس نتایج مکانیابی، 18.3% از مساحت استان (2,570 کیلومترمربع) بسیار مناسب، 24.7% (3,468 کیلومترمربع) مناسب و 31.2% (4,381 کیلومترمربع) بهعنوان مناطق حفاظتی طبقهبندی شدند. پیشبینیهای مدل افزایش 46% توسعه شهری تا سال 2037 را نشان میدهد. مقایسه سه سناریوی حفاظتی، فیزیکی و اقتصادی-اجتماعی نشان داد که سناریوی فیزیکی با امتیاز 0.780.780.78 بهترین تعادل میان توسعه و حفاظت محیطزیست را ارائه میدهد. نتایج این پژوهش چارچوب علمی جامعی برای تصمیمگیری در برنامهریزی شهری پایدار فراهم میآورد.
The phenomenon of uncontrolled urban sprawl, as one of the most critical challenges of sustainable development in the 21st century, imposes irreversible consequences on natural ecosystems, biodiversity, and the quality of natural resources. This research was conducted with the aim of developing an innovative framework for optimal site selection of urban development based on environmental criteria in Gilan Province. An intelligent integration of four advanced modeling approaches including cellular automata, logistic regression, Markov chain, and fuzzy logic was designed and implemented in the form of an integrated CA-LR-Markov-Fuzzy model. After identifying 23 important environmental criteria in four categories of physiographic, ecological, hydrological, and climatic-social, these criteria were weighted using the Analytic Hierarchy Process (AHP) and a survey of 40 experts. The validation results of the integrated model showed excellent performance with an ROC index of 0.848, Kappa coefficient of 0.79, and overall accuracy of 84%, placing it within the excellent performance range. Based on the site selection results, 18.3% of the province’s area (2,570 square kilometers) was classified as highly suitable, 24.7% (3,468 square kilometers) as suitable, and 31.2% (4,381 square kilometers) as conservation areas. The model predictions indicate increases of 46% in urban development by 2037. Comparison of three scenarios - conservation, physical, and economic-social - revealed that the physical scenario with a score of 0.78 provides the best balance between development and environmental protection. The results of this research provide a comprehensive scientific framework for decision-making in sustainable urban planning.
1. Ajirotutu, R. O., Adeyemi, A. B., Ifechukwu, G. O., Iwuanyanwu, O., Ohakawa, T. C., & Garba, B. M. P. (2024). Future cities and sustainable development: Integrating renewable energy, advanced materials, and civil engineering for urban resilience. International Journal of Sustainable Urban Development, 3.
2. Anestis, G., & Stathakis, D. (2024). Urbanization trends from global to the local scale. In Geographical Information Science (pp. 357-375). Elsevier.
3. Ansari, N., Rukhsana, & Alam, A. (2024). A modelling approach of cellular automata-based artificial neural network for investigating dynamic urban expansion in Kolkata urban agglomeration. Modeling Earth Systems and Environment, 10(3), 3789-3814.
4. Awad, J., & Jung, C. (2022). Extracting the planning elements for sustainable urban regeneration in Dubai with AHP (analytic hierarchy process). Sustainable cities and society, 76, 103496.
5. Das, S., De, S., Dutta, R., & De, S. (2024). Multi-criteria decision-making for techno-economic and environmentally sustainable decentralized hybrid power and green hydrogen cogeneration system. Renewable and Sustainable Energy Reviews, 191, 114135.
6. Derdouri, A., Murayama, Y., Morimoto, T., Wang, R., & Aghasi, N. H. M. (2025). Urban green space in transition: A cross-continental perspective from eight Global North and South cities. Landscape and Urban Planning, 253, 105220.
7. DOE: Department of Environment of Iran. (2022). The report on the environmental status of the country, 2021. Tehran: Department of Environment. [In Persian]
8. Farr, D. (2011). Sustainable urbanism: Urban design with nature. John Wiley & Sons.
9. Fieuw, W., Foth, M., & Caldwell, G. A. (2022). Towards a more-than-human approach to smart and sustainable urban development: Designing for multispecies justice. Sustainability, 14(2), 948.
10. Fitawok, M. B., & Minale, A. S. (2024). A review of the application and implications of cellular automata-based urban growth model in Africa. South African Geographical Journal, 106(3), 290-308.
11. Gilan PMPO: Gilan Provincial Management and Planning Organization. (2024). Report on demographic and infrastructural statistics of Gilan Province. Rasht: Gilan Provincial Management and Planning Organization. [In Persian]
12. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. science, 319(5864), 756-760.
13. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. John Wiley & Sons.
14. Janssen, C., & Basta, C. (2024). Are good intentions enough? Evaluating social sustainability in urban development projects through the capability approach. European Planning Studies, 32(2), 368-389.
15. Kavathekar, V., Tripathy, A. K., & Chettri, S. K. (2025). Spatio-Temporal Urban Land Use Change in Mumbai, India: Analysis and Prediction of 2030 Using Satellite Data and a Cellular Automata-Markov Chain Model. International Journal of Geoinformatics, 21(5).
16. Kobrin, S. J. (2022). Managing political risk assessment: Strategic response to environmental change. Univ of California Press.
17. Li, H., & Reynolds, J. F. (2023). Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: A combined Markov and cellular automaton approach. In Scale in remote sensing and GIS (pp. 211-230). Routledge.
18. Liu, N., Liu, Z., & Wu, Y. (2025). Direct and indirect impacts of urbanization on biodiversity across the world's cities. Remote Sensing, 17(6), 956.
19. McManamay, R. A., Vernon, C. R., Chen, M., Thompson, I., Khan, Z., & Narayan, K. B. (2024). Dynamic urban land extensification is projected to lead to imbalances in the global land-carbon equilibrium. Communications Earth & Environment, 5(1), 70.
20. Robertson, M. (2021). Sustainability principles and practice. Routledge.
21. SCI: Statistical Center of Iran. (2022). The results of the 2021 national population and housing census. Tehran: Statistical Center of Iran. [In Persian]
22. Steiner, F. R. (2012). The living landscape: An ecological approach to landscape planning. Island Press.
23. Tayebzadeh-Moghadam, M., & Malekmohammadi, B. (2024). Response of hydrological performance indices to land use changes at watershed scale. Journal of Rangeland and Watershed Science, 77(1), 85–105. [In Persian]
24. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
25. Zhao, P., Ali, Z. M., & Ahmad, Y. (2023). Developing indicators for sustainable urban regeneration in historic urban areas: Delphi method and Analytic Hierarchy Process (AHP). Sustainable Cities and Society, 99, 104990.