رویکرد نوینGIS-MCDA و هوش مصنوعی در مکانیابی بهینه نیروگاههای CSP با تأکید بر تحلیلهای جامع اقتصادی (مطالعه موردی: استان بوشهر)
محورهای موضوعی : محیط زیست و توسعه پایدارمیثم جعفری 1 * , دلارام سیکارودی 2 , سحر غیاث 3
1 - گروه مهندسی محیط زیست و HSE، دانشگاه آزاد اسلامی واحد نجف آباد، ایران
2 - گروه مهندسی ایمنی، بهداشت و محیط زیست، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
3 - واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.
کلید واژه: مکانیابی بهینه, هوش مصنوعی, فازی, نیروگاه حرارتی خورشیدی, GIS, تحلیل اقتصادی, بوشهر.,
چکیده مقاله :
این پژوهش با هدف ارائه رویکردی نوین و جامع در مکانیابی بهینه نیروگاههای حرارتی خورشیدی (CSP) در استان بوشهر، ترکیبی از سیستم اطلاعات جغرافیایی (GIS)، تحلیل چند معیاره فازی (Fuzzy MCDA) و تکنیکهای هوش مصنوعی را به کار گرفته است. روششناسی پژوهش شامل پردازش تصاویر ماهوارهای Landsat 8 با استفاده از الگوریتم FLAASH برای تصحیحات اتمسفری، محاسبه شاخصهای NDVI و LST، و طبقهبندی کاربری اراضی با دقت کلی 87% (ضریب کاپا 0.83) بود. وزندهی معیارها با استفاده از فرآیند تحلیل سلسله مراتبی انجام شد، با ضریب سازگاری 0.093. الگوریتمهای یادگیری ماشین شامل Random Forest و CNN برای بهبود دقت پیشبینیها به کار گرفته شدند، که منجر به افزایش 12.7% در دقت مدل شد (RMSE: 0.089 در مقابل 0.102 در روشهای سنتی MCDA). طبق تحلیلهای Zonal روی خروجی مدل تلفیقی هوش مصنوعی و ارزیابی چند معیاره فازی، پهنه های ایده آل (تقریباً ٪۵.۳۷)، به عنوان مناطق بسیار مناسب یا بهینه شناسایی و استخراج گردیدند. تحلیل هزینه-فایده (CBA) با استفاده از شبیهسازی مونت کارلو برای ارزیابی اقتصادی پروژههای CSP انجام شد. تحلیل حساسیت Sobol نشان داد که NPV پروژه بیشترین حساسیت را نسبت به هزینه سرمایهگذاری اولیه و قیمت فروش برق دارد. ارزیابی ریسک با استفاده از VaR و CVaR در سطح اطمینان 95% انجام شد. این پژوهش با ارائه چارچوبی جامع و نوآورانه، گامی مهم در بهینهسازی فرآیند مکانیابی نیروگاههای CSP برداشته و میتواند به عنوان الگویی برای مطالعات مشابه در سایر مناطق مورد استفاده قرار گیرد.
This study presents an innovative and comprehensive approach to optimal site selection for Concentrated Solar Power (CSP) plants in Bushehr Province, Iran, by integrating Geographic Information Systems (GIS), Fuzzy Multi-Criteria Decision Analysis (Fuzzy MCDA), and Artificial Intelligence techniques. The methodology encompassed processing Landsat 8 satellite imagery using the FLAASH algorithm for atmospheric corrections, calculating NDVI and LST indices, and land use classification with an overall accuracy of 87% (Kappa coefficient 0.83). Criteria weighting was performed using Analytic Hierarchy Process with a consistency ratio of 0.093. Machine learning algorithms, including Random Forest and Convolutional Neural Networks (CNN), were employed to enhance prediction accuracy, resulting in a 12.7% improvement in model precision (RMSE: 0.089 compared to 0.102 in traditional MCDA methods). According to zonal analyses on the output of the integrated artificial intelligence model and fuzzy multi-criteria assessment, the ideal areas (approximately 5.37%) were identified and extracted as highly suitable or optimal zones. Cost-Benefit Analysis (CBA) utilizing Monte Carlo simulation was conducted for economic evaluation of CSP projects. Sobol sensitivity analysis revealed that the project’s Net Present Value (NPV) is most sensitive to initial investment costs and electricity selling price. Risk assessment was performed using Value at Risk (VaR) and Conditional Value at Risk (CVaR) at a 95% confidence level. Results indicated that 46.3% of the province’s area is suitable for CSP plant construction, with three regions showing the highest potential, demonstrating positive NPV and Internal Rate of Return (IRR) above the discount rate. This research, by providing a comprehensive and innovative framework, takes a significant step in optimizing the site selection process for CSP plants and can serve as a model for similar studies in other regions.
Adler-Golden, S. M., Matthew, M. W., Bernstein, L. S., Levine, R. Y., Berk, A., Richtsmeier, S. C., … & Chetwynd, J. H. (1999). Atmospheric correction for shortwave spectral imagery based on MODTRAN4. In Imaging Spectrometry V (Vol. 3753, pp. 61-69). International Society for Optics and Photonics. https://doi.org/10.1117/12.366315
Ahmadi, R., Zare, M., & Rashidi, M. (2022). Transportation infrastructure and its role in energy project development: A case study of Bushehr Province. Journal of Transport Geography, 98, 103244. https://doi.org/10.1016/j.jtrangeo.2021.103244
Al Garni, H. Z., & Awasthi, A. (2021). A hybrid fuzzy AHP-TOPSIS approach for evaluating concentrated solar power technologies in Saudi Arabia. Renewable and Sustainable Energy Reviews, 135, 110279. https://doi.org/10.1016/j.rser.2020.110279
Azizkhani, M., Vakili, A., Noorollahi, Y., & Naseri, F. (2017). Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran. Renewable and Sustainable Energy Reviews, 75, 1198-1206. https://doi.org/10.1016/j.rser.2016.11.103
Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. https://doi.org/10.1016/0165-0114(85)90090-9
Doorga, J. R., Rughooputh, S. D., & Boojhawon, R. (2019). Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renewable Energy, 133, 1201-1219. https://doi.org/10.1016/j.renene.2018.08.105
FAO. (2020). Global Forest Resources Assessment 2020: Main report. Rome. https://doi.org/10.4060/ca9825en
Feldman, D., Ramasamy, V., Fu, R., Ramdas, A., Desai, J., & Margolis, R. (2021). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. National Renewable Energy Laboratory. NREL/TP-6A20-77324. https://www.nrel.gov/docs/fy21osti/77324.pdf
Gastli, A., & Charabi, Y. (2010). Solar electricity prospects in Oman using GIS-based solar radiation maps. Renewable and Sustainable Energy Reviews, 14(2), 790-797. https://doi.org/10.1016/j.rser.2009.08.018
Ghasemi, A., Khalili, D., & Kamgar-Haghighi, A. A. (2022). Climate change impacts on temperature and precipitation patterns in Bushehr Province, Iran. Theoretical and Applied Climatology, 147(1), 379-393. https://doi.org/10.1007/s00704-021-03846-z
IEA. (2020). Projected Costs of Generating Electricity 2020. International Energy Agency, Paris. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020
IRENA. (2023). World Energy Transitions Outlook 2023: 1.5°C Pathway. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/publications/2023/Mar/World-Energy-Transitions-Outlook-2023
Jiang, H., Shao, Y., & Tao, F. (2023). Machine learning-based multi-criteria decision making for renewable energy site selection: A review. Renewable and Sustainable Energy Reviews, 177, 113092. https://doi.org/10.1016/j.rser.2022.113092
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristóbal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032
Karimi, S., Mahmoudi, M., & Raeissi, S. (2021). Economic analysis of Bushehr Province: Challenges and opportunities for sustainable development. Iranian Economic Review, 25(2), 341-358. https://doi.org/10.22059/IER.2021.81897
Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386-392. https://doi.org/10.1002/wics.1314
Kumar, N. M., Chopra, S. S., Chand, A. A., Elavarasan, R. M., & Shafiullah, G. M. (2022). Hybrid renewable energy systems for sustainable development: A review. Environmental Research, 204, 112087. https://doi.org/10.1016/j.envres.2021.112087
Lilliestam, J., Thonig, R., Späth, L., Caldés, N., Lechón, Y., del Río, P., … & Díaz-Vázquez, A. R. (2021). Policy pathways for the energy transition in Europe and selected European countries. Renewable and Sustainable Energy Reviews, 151, 111565. https://doi.org/10.1016/j.rser.2021.111565
Malczewski, J. (2006). Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 8(4), 270-277. https://doi.org/10.1016/j.jag.2006.01.003
Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science. Springer. https://doi.org/10.1007/978-3-540-74757-4
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343
Mehos, M., Murphy, C., Hale, E., Jorgenson, J., Denholm, P., & Ong, S. (2022). The role of concentrating solar-thermal technologies in a decarbonized US grid. Renewable and Sustainable Energy Reviews, 158, 112119. https://doi.org/10.1016/j.rser.2022.112119
Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., … & Kruizenga, A. (2016). Concentrating solar power Gen3 demonstration roadmap. National Renewable Energy Lab.(NREL), Golden, CO (United States). NREL/TP-5500-67464. https://www.nrel.gov/docs/fy17osti/67464.pdf
Mohammadi, H., Taghavi, F., & Ahmadi, M. (2023). Assessment of solar energy potential in Bushehr Province for photovoltaic and concentrated solar power applications. Renewable Energy, 175, 662-676. https://doi.org/10.1016/j.renene.2022.10.007
Noorollahi, Y., Yousefi, H., & Mohammadi, M. (2016). Multi-criteria decision support system for wind farm site selection using GIS. Sustainable Energy Technologies and Assessments, 13, 38-50. https://doi.org/10.1016/j.seta.2015.11.007
NREL. (2020). Annual Technology Baseline. National Renewable Energy Laboratory. https://atb.nrel.gov/
Rezaei, A., & Hosseini, S. M. (2023). Demographic trends and projections for Bushehr Province: Implications for urban planning and energy demand. Journal of Population Studies, 37(1), 45-62. https://doi.org/10.22034/JP.2023.254167.1007
Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Co.
Sánchez-Lozano, J. M., García-Cascales, M. S., & Lamata, M. T. (2016). GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain. Applied Energy, 171, 86-102. https://doi.org/10.1016/j.apenergy.2016.03.030
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and computers in simulation, 55(1-3), 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6
Soltani, A., Rezaei, M., & Zare, H. (2023). Site selection for concentrated solar power plants in Bushehr Province: Balancing energy potential with environmental constraints. Sustainable Cities and Society, 86, 104080. https://doi.org/10.1016/j.scs.2022.104080
Steffen, B. (2020). Estimating the cost of capital for renewable energy projects. Energy Economics, 88, 104783. https://doi.org/10.1016/j.eneco.2020.104783
Suh, J., & Brownson, J. R. (2016). Solar farm suitability using geographic information system fuzzy sets and analytic hierarchy processes: Case study of Ulleung Island, Korea. Energies, 9(8), 648. https://doi.org/10.3390/en9080648
Tahri, M., Hakdaoui, M., & Maanan, M. (2015). The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renewable and Sustainable Energy Reviews, 51, 1354-1362. https://doi.org/10.1016/j.rser.2015.07.054
United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. Resolution adopted by the General Assembly. https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11-17. https://doi.org/10.1016/j.rser.2013.07.042
Watson, J. J., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20-31. https://doi.org/10.1016/j.landurbplan.2015.02.001
World Bank. (2021). World Bank Open Data. https://data.worldbank.org/
Yousefi, H., Hafeznia, H., & Yousefi-Sahzabi, A. (2018). Spatial site selection for solar power plants using a GIS-based boolean-fuzzy logic model: A case study of Markazi Province, Iran. Energies, 11(7), 1648. https://doi.org/10.3390/en11071648
Zarei, M., Ghorbani, M., & Nasrabadi, T. (2020). Topographic and geomorphological analysis of Bushehr Province using GIS techniques. Iranian Journal of Earth Sciences, 12(3), 214-226. https://doi.org/10.30495/IJES.2020.680708
Zhou, Y., Wu, J., & Long, C. (2023). Renewable energy integration in power systems: Challenges and solutions. Renewable and Sustainable Energy Reviews, 177, 113551. https://doi.org/10.1016/j.rser.2023.113551
Zhu, X., Shen, Y., Chen, F., Zou, L., & Li, J. (2023). A novel hybrid MCDM approach for site selection of concentrated solar power plants: A case study in China. Renewable Energy, 203, 333-350. https://doi.org/10.1016/j.renene.2023.02.132