Ultra-Trace Determination of Copper and Silver in Environmental Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry
Subject Areas : Journal of Chemical Health RisksJ. Abolhasani 1 * , M. Amjadi 2 , E. Ghorbani Kalhor 3
1 - Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 - Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
3 - Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Keywords: Copper, Ionic liquids, Silver, Preconcentration, Electrothermal atomic absorption spectrometry, Single-drop microextraction,
Abstract :
A sensitive, selective and effective ionic liquid-based single drop microextraction technique wasdeveloped by using ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate, C6MIMPF6, coupledwith electrothermal atomic absorption spectrometry (ETAAS) for the determination of copper and silver inenvironmental samples. Dithizone was used as chelating agent. Several factors that influence themicroextraction efficiency and ETAAS signal, such as pH, dithizone concentration, extraction time, amounts ofionic liquid, stirring rate, pyrolysis and atomization temperature were investigated and the microextractionconditions were established. In the optimum experimental conditions, the detection limits (3 s) of the methodwere 4 and 8 ng L-1 and corresponding relative standard deviations (0.1 μg L-1, n = 6) were 4.2% and 4.8% forAg and Cu, respectively. The developed method was validated by analysis of a certified reference material andapplied to the determination of silver and copper.
- Greenwood N.N. , Earnshaw A., 1997.
- Chemistry of the Elements Elsevier London.
- Resano M., AramendÃÂa M., GarcÃÂa-Ruiz E.,
- Crespo C. , Belarra M. A., 2006. Solid samplinggraphite
- furnace atomic absorption spectrometry
- for the direct determination of silver at trace and
- ultratrace levels. Analytica Chimica Acta 571:
- -149.
- Baron M. G., Herrin R. T., Armstrong D. E.,
- The measurement of silver in road salt by
- electrothermal atomic absorption spectrometry.
- Analyst 125: 123-126
- Bento Borba da Silva J., Andreia Mesquita da
- Silva M., Jose Curtius A., Welz B., 1999.
- Determination of Ag, Pb and Sn in aqua regia
- extracts from sediments by electrothermal atomic
- absorption spectrometry using Ru as a permanent
- modifier. Journal of Analytical Atomic
- Spectrometry 14: 1737-1742.
- Bermejo-barrera P., Moreda-pineiro J., Moredapineiro
- A., Bermejo-barrera A., 1998. Usefulness
- of the chemical modification and the multiinjection
- technique approaches in the
- electrothermal atomic absorption spectrometric
- determination of silver, arsenic, cadmium,
- chromium, mercury, nickel and lead in sea-water.
- J. Anal. At. Spectrom. 13: 777-786.
- El-Shahawi M. S., Bashammakh A. S., Bahaffi
- S. O., 2007. Chemical speciation and recovery of
- gold(I, III) from wastewater and silver by liquidâââ
- liquid extraction with the ion-pair reagent
- amiloride mono hydrochloride and AAS
- determination. Talanta 72: 1494-1499.
- GHiasvand A. R., Moradi F., SHarghi H.,
- Hasaninejad A. R., 2005. Determination of
- Silver(I) by Electrothermal-AAS in a Microdroplet
- Formed from a Homogeneous Liquid-Liquid
- Extraction System Using
- Tetraspirocyclohexylcalix4pyrroles. Analytical
- Sciences 24: 387-.
- Abe S., Fujii K., Sono T., 1994. Liquid-liquid
- extraction of manganese(II), copper(II) and
- zinc(II) with acyclic and macrocyclic Schiff bases
- containing bisphenol A subunits. Anal. Chim. Acta
- : 325-330.
- Dadfarnia S., Haji Shabani A. M., Gohari M.,
- Trace enrichment and determination of
- silver by immobilized DDTC microcolumn and
- flow injection atomic absorption spectrometry.
- Talanta 64: 682-687.
- Tuzen M., Soylak M., 2009. Column solidphase
- extraction of nickel and silver in
- environmental samples prior to their flame atomic
- absorption spectrometric determinations. Journal
- of Hazardous Materials 164: 1428-1432.
- Tunçeli A., Türker A. R., 2000. Flame atomic
- absorption spectrometric determination of silver
- after preconcentration on Amberlite XAD-16 resin
- from thiocyanate solution. Talanta 51: 889-894.
- Christou C. K., Anthemidis A. N., 2009. Flow
- injection on-line displacement/solid phase
- extraction system coupled with flame atomic
- absorption spectrometry for selective trace silver
- determination in water samples. Talanta 78: 144-
- Soylak M. , Cay R. S., 2007.
- Separation/preconcentration of silver(I) and
- lead(II) in environmental samples on cellulose
- nitrate membrane filter prior to their flame atomic
- absorption spectrometric determinations. Journal
- of Hazardous Materials 146: 142-147.
- Shamspur T., Mashhadizadeh M. H.,
- Sheikhshoaie I., 2003. Flame atomic absorption
- spectrometric determination of silver ion after
- preconcentration on octadecyl silica membrane
- disk modified with bis5-((4-
- nitrophenyl)azosalicylaldehyde) as a new Schiff
- base ligand. Journal of Analytical Atomic
- Spectrometry 18: 1407-1410.
- Katarina R. K., Takayanagi T., Oshima M. ,
- Motomizu S., 2006. Synthesis of a chitosan-based
- chelating resin and its application to the selective
- concentration and ultratrace determination of
- silver in environmental water samples. Analytica
- Chimica Acta 558: 246-253.
- Pu Q., Sun Q., 1998. Application of 2-
- mercaptobenzothiazole-modified silica gel to online
- preconcentration and separation of silver for
- its atomic absorption spectrometric determination
- Analyst 123: 239-243.
- Chakrapani G., Mahanta P. L., Murty D. S. R.,
- Gomathy B., 2001. Preconcentration of traces of
- gold, silver and palladium on activated carbon and
- its determination in geological samples by flame
- AAS after wet ashing. Talanta 53: 1139-1147.
- Faraji M., Yamini Y., Shariati S., 2009.
- Application of cotton as a solid phase extraction
- sorbent for on-line preconcentration of copper in
- water samples prior to inductively coupled plasma
- optical emission spectrometry determination.
- Journal of Hazardous Materials 166: 1383-1388.
- Mashhadizadeh M. H., Pesteh M., Talakesh
- M., Sheikhshoaie I., Ardakani M. M., Karimi M.
- A., 2008. Solid phase extraction of copper (II) by
- sorption on octadecyl silica membrane disk
- modified with a new Schiff base and determination
- with atomic absorption spectrometry.
- Spectrochimica Acta Part B: Atomic Spectroscopy
- : 885-888.
- Xiang G., Zhang Y., Jiang X., He L., Fan L.,
- Zhao W., 2010. Determination of trace copper in
- food samples by flame atomic absorption
- spectrometry after solid phase extraction on
- modified soybean hull. Journal of Hazardous
- Materials 179: 521-525.
- Tokalñoßlu à ž., Gürbüz F., 2010. Selective
- determination of copper and iron in various food
- samples by the solid phase extraction. Food
- Chemistry 123: 183-187.
- Chen X. W., Huang L. L. , He R. H., 2009.
- Silk fibroin as a sorbent for on-line extraction and
- preconcentration of copper with detection by
- electrothermal atomic absorption spectrometry.
- Talanta 78: 71-75.
- Sant'Ana O. D., Wagener A. L. R., Santelli R.
- E., Cassella R. J., Gallego M., Valcárcel M., 2002.
- Precipitationâââdissolution system for silver
- preconcentration and determination by flow
- injection flame atomic absorption spectrometry.
- Talanta 56: 673-680.
- Jiang S., Fu F., Qu J., Xiong Y., 2008. A
- simple method for removing chelated copper from
- wastewaters: Ca(OH)2-based replacementprecipitation.
- Chemosphere 73: 785-790.
- Jeannot M. A., Cantwell F. F., 1996. Solvent
- Microextraction into a Single Drop. Analytical
- Chemistry 68: 2236-2240.
- Dadfarnia S., Haji Shabani A. M., 2010. Recent
- development in liquid phase microextraction for
- determination of trace level concentration of
- metalsâââA review. Analytica Chimica Acta 658:
- -119.
- Pena-Pereira F., Lavilla I., Bendicho C., 2009.
- Miniaturized preconcentration methods based on
- liquidâââliquid extraction and their application in
- inorganic ultratrace analysis and speciation: A
- review. Spectrochimica Acta Part B: Atomic
- Spectroscopy 64: 1-15.
- Xu L., Basheer C., Lee H. K., 2007.
- Developments in single-drop microextraction.
- Journal of Chromatography A 1152: 184-192.
- Psillakis E., Kalogerakis N., 2002.
- Developments in single-drop microextraction.
- TrAC Trends in Analytical Chemistry 21: 54-64.
- Chamsaz M., Arbab-Zavar M. H., Nazari S.,
- Determination of arsenic by electrothermal
- atomic absorption spectrometry using headspace
- liquid phase microextraction after in situ hydride
- generation. Journal of Analytical Atomic
- Spectrometry 18: 1279-1282.
- Xia L., Hu B., Jiang Z., Wu Y., Liang Y.,
- Single-Drop Microextraction Combined
- with Low-Temperature Electrothermal
- Vaporization ICPMS for the Determination of
- Trace Be, Co, Pd, and Cd in Biological Samples.
- Analytical Chemistry 76: 2910-2915.
- Liang P., Liu R., Cao J., 2008. Single drop
- microextraction combined with graphite furnace
- atomic absorption spectrometry for determination
- of lead in biological samples. Microchimica Acta
- : 135-139.
- Fan Z., 2007. Determination of antimony(III)
- and total antimony by single-drop microextraction
- combined with electrothermal atomic absorption
- spectrometry. Analytica Chimica Acta 585: 300-
- Fan Z., Zhou W., 2006. Dithizoneâââchloroform
- single drop microextraction system combined with
- electrothermal atomic absorption spectrometry
- using Ir as permanent modifier for the
- determination of Cd in water and biological
- samples. Spectrochimica Acta Part B: Atomic
- Spectroscopy 61: 870-874.
- Maltez H. F., Borges D. L. G., Carasek E.,
- Welz B., Curtius A. J., 2008. Single drop microextraction
- with O,O-diethyl dithiophosphate for
- the determination of lead by electrothermal atomic
- absorption spectrometry. Talanta 74: 800-805.
- Li L., Hu B., Xia L., Jiang Z., 2006.
- Determination of trace Cd and Pb in
- environmental and biological samples by ETVICP-
- MS after single-drop microextraction. Talanta
- : 468-473.
- Swatloski R. P., Holbrey J. D., Rogers R. D.,
- Ionic liquids are not always green:
- hydrolysis of 1-butyl-3-methylimidazolium
- hexafluorophosphate. Green Chemistry 5: 361-
- Pandey S., 2006. Analytical applications of
- room-temperature ionic liquids: A review of recent
- efforts. Analytica Chimica Acta 556: 38-45.
- Wei G. T., Yang Z., Chen C. J., 2003. Room
- temperature ionic liquid as a novel medium for
- liquid/liquid extraction of metal ions. Analytica
- Chimica Acta 488: 183-192.
- Hirayama N., Deguchi M., Kawasumi H.,
- Honjo T., 2005. Use of 1-alkyl-3-
- methylimidazolium hexafluorophosphate room
- temperature ionic liquids as chelate extraction
- solvent with 4,4,4-trifluoro-1-(2-thienyl)-1,3-
- butanedione. Talanta 65: 255-260.
- Haixia S., Zaijun L., Ming L., 2007. Ionic
- liquid 1-octyl-3-methylimidazolium
- hexafluorophosphate as a solvent for extraction of
- lead in environmental water samples with
- detection by graphite furnace atomic absorption
- spectrometry. Microchimica Acta 159: 95-100.
- Manzoori J. L., Amjadi M., Abulhassani J.,
- Ionic liquid-based single drop
- microextraction combined with electrothermal
- atomic absorption spectrometry for the
- determination of manganese in water samples.
- Talanta 77: 1539-1544.
- Manzoori J. L., Amjadi M., Abulhassani J.,
- Ultra-trace determination of lead in water
- and food samples by using ionic liquid-based
- single drop microextraction-electrothermal atomic
- absorption spectrometry. Analytica Chimica Acta
- : 48-52.
- Ye C., Zhou Q., Wang X., 2007. Improved
- single-drop microextraction for high sensitive
- analysis. Journal of Chromatography A 1139: 7-
- Jeannot M. A., Cantwell F. F., 1997. Mass
- Transfer Characteristics of Solvent Extraction into
- a Single Drop at the Tip of a Syringe Needle.
- Analytical Chemistry 69: 235-239.