سنتز نانو-ماکرو ساختار منیزیم اکسید به روش آسان بدون استفاده از ماده فعال در سطح و بررسی کاربرد آن در رهایش داروی نیفدیپین
محورهای موضوعی : شیمی تجزیهبیتا عابدی 1 , علی اکبر طرلانی 2 * , سعید جامه بزرگی 3 , علی نیازی 4
1 - دانشجوی دکتری شیمی معدنی، دانشگاه آزاد اسلامی واحد اراک، اراک
2 - دانشیار شیمی معدنی، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران
3 - دانشیار شیمی معدنی، دانشگاه آزاد اسلامی واحد همدان، همدان
4 - استاد شیمی تجزیه، دانشگاه آزاد اسلامی واحد اراک، اراک
کلید واژه: نیفدیپین, منیزیم اکسید, آهستهرهش, آبگرمایی, ساختار مکعبی و کروی,
چکیده مقاله :
در این پژوهش، نانو-ماکرو منیزیم اکسید بهآسانی و با نسبتهای متفاوتی از اسیدآمینه آرژنین و اوره (بدون استفاده از ماده فعال در سطح) با ساختارهای متفاوت مکعبی و کروی با روش آبگرمایی در دمای 130 تا 180 درجه سانتیگراد در مدت 24 ساعت سنتز شد و در دمای 400 و 600 درجه سانتیگراد کلسینه شد تا نانوذراتی بین 42 تا 80 نانومتر بهدست آید. شش فراورده بهدست آمده با روشهای پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، آزمون جذب و واجذب نیتروژن (BET)، طیفسنجی فروسرخ (IR)، طیفسنجی فرابنفش-مرئی (UV-Vis) و تجزیه عنصری (به روش EDX) شناسایی شدند. نمونههای ׳MgO1 و MgO2 که به ترتیب کروی و مکعبی منظم بودند بهعنوان حامل داروی نامحلول نیفدیپین برای افزایش انحلالپذیری آن انتخاب شدند. سپس رهایش این دارو در محیطهای شبیهسازی معده (2/1=pH) و روده (8/6= pH) بررسی شد. بهترین نمونه MgO2 بود که در محیط روده در طی 15 ساعت، 100 درصد دارو از آن رهایش پیدا کرد. همچنین، سینتیک داروی نیفدیپین از بستر ׳MgO1 و MgO2 با استفاده از مدل کورسمایر-پپاس موردبررسی قرار گرفت و نتیجه نشان داد که سازوکار رهایش دارو در محیط معده و روده از غیرفیکین پیروی میکند.
[1] Farokhzad, O.C.; Langer, R.; ACS Nano 3, 16–20, (2009).
[2] طرلانی، علی اکبر؛ نجارزاده، زهرا؛ محمدیان، نرگس؛ در خوش بایع کلایی، فاطمه؛ “نانوذرات و دارو رسانی-روشها و کاربردها”، انتشارات فرمنش، تهران، چاپ اول، 394، 1395
[3] Union, I.; Pure, O.F.; A. Chemistry 57, 603–619, 1985.
[4] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. (1992) 10834–10843.
[5] Rouquerolt, J. D.; Avnir, C.W.; Fairbridge, D.H.; Everett, J.H.; Haynes, N.; Pernicone, J.D.F.; Ramsay, K.S.W.; Sing, K.K.; Unger, Pure & Appl. Chem. 66, 1739–1758, 1994.
[6] Zhang, R.; Elzatahry, A.A.; Al-Deyab, S.S.; Zhao, D.; Nano Today 7, 344–366, 2012.
[7] Tarlani, A.; Fallah, M.; Lotfi,B.; F., Khazraei, A.; Golsanamlou, S.; Muzart, J.; Mirza-Aghayan, M.; Biosensors and Bioelectronics 67, 601–607, 2015.
[8] Mezni, A.; Altalhi, T.; Ben, N.; Aldalbahi, A.; Boulehmi, S.; Santos, A.; Journal of Colloid And Interface Science 491, 375–389, 2017.
[9] Hazra Chowdhury, A.; Hazra Chowdhury, I.; Kanti Naskar, M.; Materials Letters 158, 190–193, 2015.
[10] Roggenbuck, J.; Tiemann, M.; Journal of the American Chemical Society 127, 1096–1097, 2005.
[11] Hadia, N.M.A.; Mohamed, H.A.H.; Materials Science in Semiconductor Processing 29, 238–244, 2015.
[12] Bhagiyalakshmi, M.; Hemalatha, P.; Ganesh, M.; Mei, P.M.; Jang, H.T.; Fuel 90, 1662–1667, 2011.
[13] Feng, J.; Zou, L.; Wang, Y.; Li, B.; He, X.; Fan, Z.; Ren,Y.; Lv,Y.; Zhang, M.; Chen, D.; Journal of Colloid and Interface Science 438, 259–267, 2015.
[14] Mortazavi, G.; Mobasherpour, I.; Rad, E.M.; Journal of Ceramic Processing Research 15, 88–92, 2014.
[15] Cao, C.Y.; Qu, J.; Wei, F.; Liu, H.; Song, W.G.; ACS Applied Materials and Interfaces 4, 4283–4287, 2012.
[16] Antunes, W.M.; Veloso, C. de O.; Henriques, C.A.; Catalysis Today 133–135, 548–554, 2008.
[17] Zhao, J.; Mu, F.; Jia, L.; Qin, X.; Yang, C.; Materials Chemistry and Physics 166, 176–181, 2015.
[18] Wu, C.C.; Cao, X.; Wen, Q.; Wang, Z.; Gao, Q.; Zhu, H.; Talanta 79, 1223–1227, 2009.
[19] Umar, A.; Rahman, M.M.; Hahn, Y.B.; Electrochemistry Communications 11, 1353–1357, 2009.
[20] Kim, H.W.; Shim, S.H.; Lee, J.W.; Kebede, M.A.; Yang, H.H.; Kong, M.H.; Choi, S.M.; Yang, J.H.; Bang, H.J.; Kim, H.Y.; Surface and Coatings Technology 202, 2503–2508, 2008.
[21] Blin, J.L.; Su, B.L.; Langmuir18(13), 5303–5308, 2002.
[22] Somanathan, T.; Krishna, V.M.; Saravanan, V.; Kumar, R.; Journal of Nanoscience and Nanotechnology 15, 1–11, 2016.
[23] Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P.; New J. Chem. 38 (2014) 5149–5163.
[24] Feinle, A.; Heugenhauser, A.; Hüsing, N.; Journal of Supercritical Fluids 106 (2015) 133–139.
[25] Alexa, I.F.; Ignat, M.; Popovici, R.F.; Timpu, D.; Popovici, E.; International Journal of Pharmaceutics 436, 111–119, 2012.
[26] Choi, J.S.; Moon, S.H.; Kim, J.H.; Kim, G.H.; Current Applied Physics 10, 1378–1382, 2010.
[27] Almerindo, G.I.; Probst, L.F.D.; Campos, C.E.M.; De Almeida, R.M.; Meneghetti, S.M.P.; Meneghetti, M.R.; Clacens, J.M.; Fajardo, H. V.; Journal of Power Sources 196, 8057–8063, 2011.
[28] Ding, Y.; Zhang, G.; Wu, H.; Hai, B.; Wang, L.; Qian, Y.; Chem. Mater. 13920, 435–440, 2001.
[29] Park,C.G.; Kim, E.; M.; Park, J.H.; Park, Y.; Choy, B.; Journal of Controlled Release 149, 250–257, 2011.
[31] Hu, L.; Sun, H.; Zhao, Q.; Han, N.; Bai, L.; Wang,Y.; Jiang, T.; Wang, S.; Materials Science and Engineering C 47, 313–324, 2015.
[32] Işiklan, N.; Inal, M.; Kurşun, F.; Ercan, G.; Carbohydrate Polymers 84, 933–943, 2011.
[33] Parida, P.; Mishra, S.C.; Sahoo, S.; Behera, A.; Nayak, B.P.; Journal of Pharmaceutical Analysis 6, 341–344, 2016.
[34] I.J. Marques, P.D. Vaz, A.C. Fernandes, C.D. Nunes, Microporous and Mesoporous Materials 183 (2014) 192–200.
[35] Huang, J.; Wigent, R.J.; Bentzley, C.M.; Schwartz, J.B.; International Journal of Pharmaceutics 319, 44–54, 2006.
[36] Ottaviani, G.; Gosling, D.J.; Patissier, C.; Rodde, S.; Zhou, L.; Faller, B.; European Journal of Pharmaceutical Sciences 41, 452–457, 2010.
[37] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W.; Pure and Applied Chemistry 87, 1051–1069, 2015.
[38] Nastase, S.; Bajenaru, L.; Matei, C.; Mitran, R.A.; Berger, D.; MICROPOROUS AND MESOPOROUS MATERIALS 182,) 32–39, 2013.
[39] Balamurugan, S.; Ashna, L.; Parthiban, P.; Journal of Nanotechnology 2014, 10–12, 2014.
[40] I.J.; Marques, P.D.; Vaz, A.C.; Fernandes, C.D.; Nunes, Microporous and Mesoporous Materials 183 (2014) 192–200.
[41] Ochoa, L.; Igartua, M.; Hernández, R.M.; Gascón, A.R.; Solinis, M.A.; Pedraz, J.L.; European Journal of Pharmaceutics and Biopharmaceutics 77, 306–312, 2011.
[42] Hashemikia, S.; Hemmatinejad, N.; Ahmadi, E.; Montazer, M.; Journal of Colloid and Interface Science 443, 105–114, 2015.
[43] Ayad, M.M.; Salahuddin, N.A.; Torad, N.L.; El-nasr, A.A.; RSC Advances 6, 57929–57940, 2016.
[44] Han, N.; Wang, Y.; Bai, J.; Liu, J.; Wang, Y.; Gao, Y.; Jiang, T.; Kang, W.; Wang, S.; Microporous and Mesoporous Materials 219, 209–217, 2016.