رابطه کمی ساختار-فعالیت تعدادی از مشتق¬های فلاونوئیدی به-عنوان مهارکننده¬های استیلکولیناستراز برپایه الگوریتم مونت کارلو
زهرا نظری
1
(
دانشجوی دکترای عمومی داروسازی، گروه شیمی دارویی، دانشکده داروسازی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران.
)
شهین احمدی
2
(
دانشیار گروه شیمی دارویی، دانشکده شیمی دارویی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران.
)
علی الماسی راد
3
(
استاد گروه شیمی دارویی، دانشکده داروسازی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران.
)
کلید واژه: QSAR, فلاونوئیدها, مهارکننده¬های استیلکولیناستراز, SMILES, شاخص آرمانی همبستگی.,
چکیده مقاله :
درسالهای اخیر، روشی مبتنی بر رویکرد مستقل از بهینهسازی مولکول برپایه توصیفگرهای ساختاری مولکولی و توپولوژیکی، بهعنوان یک رویکرد جذاب در مدلسازی QSAR معرفی شده است. یکی از ویژگیهای کلیدی این رویکرد به استفاده از توصیفگرها برپایه سامانه ورودی-خط ورودی-مولکولی سادهشده (SMILES) برای توسعه مدل QSAR اشاره دارد. در این پژوهش، با هدف مطالعه و بررسی QSAR برخی از مشتقهای فلاونوئیدی بهعنوان مهارکنندههای استیلکولیناستراز برپایه الگوریتم مونت کارلو، مجموعهای از 88 مهارکننده استیلکولیناستراز از مقالههای معتبر انتخاب شد. ساختار ترکیبهای با نماد SMILES بهعنوان فایلهای ورودی نرم افزار تعریف و بهطور تصادفی به چهار سری شامل آموزش، آموزش نامرئی، واسنجی و مجموعه اعتبارسنجی تقسیم و مدلسازی انجام شد. توصیفگرهای بهینه مورداستفاده در مدل از ترکیب SMILES و نمودار بدون هیدروژن برپایه تابع هدف جدید انتخاب شدند. قدرت پیشبینی مدلها با مجموعههای اعتبارسنجی، ارزیابی شد. نتیجههای بهدستآمده از چهار سری تصادفی نشان داد که مدلها پیشگو و قابل اعتماد از لحاظ آماری، هستند. توصیفگرهای بااهمیت افزاینده و کاهنده فعالیت مهارکنندگی استیلکولیناستراز مشتقهای فلاونوئید شناسایی شدند. همچنین، pIC50 تعداد زیادی از مشتقهای فلاونوئید طبیعی مهارکننده آنزیم استیلکولیناستراز محاسبه و گزارش شد.
چکیده انگلیسی :
A method based on an independent approach of molecule optimization based on structural and topological molecular features has recently been introduced as an attractive approach in the QSAR modeling. A key feature of this approach refers to the use of descriptors based on the Simplified Molecular Input Line Input System (SMILES) to develop the QSAR model. In this research, by studying the QSAR of some flavonoid derivatives as acetylcholinesterase inhibitors based on the Monte Carlo algorithm, a set of 88 acetylcholinesterase inhibitors was selected from peer reviewed papers. The structures of the compounds in SMILES format were defined as software input files and randomly divided into four series including training, invisible training, calibration and validation sets and modeling was done. The optimal descriptors used in the model were selected from the combination of SMILES and hydrogen suppressor graph based on a new objective function. Finally, the predictive power of models was evaluated by validation sets. The results of four random series showed that predictive and statistically reliable models were obtained. The most important descriptors that increase and decrease the acetylcholinesterase inhibitory activity of flavonoid derivatives were identified. Finally, acetylcholinesterase inhibitory (pIC50) of a large number of natural flavonoid derivatives were calculated and reported. Using the obtained model, it is possible to predict pIC50 of flavonoid derivatives as acetylcholinesterase enzyme inhibitors using Monte Carlo and SMILES optimization methods
[1] Migliaccio R, Cacciamani F. The temporal lobe in typical and atypical Alzheimer disease. Handb Clin Neurol.
2022;187:449-66. doi: 10.1016/B978-0-12-823493-8.00004-3
[2] Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015-The Global Impact of Dementia:
An analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International (ADI); 2015.
[3] Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic
review and metaanalysis. Alzheimers Dement. 2013;9(1):63-75.e2. doi: 10.1016/j.jalz.2012.11.007
[4] Khan H, Amin S, Kamal MA, Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing
and future prospects. Biomedicine & Pharmacotherapy. 2018;101:860-70. doi: 10.1016/j.biopha.2018.03.007
[5] Soleymani N, Ahmadi S, Shiri F, Almasirad A. QSAR and molecular docking studies of isatin and indole
derivatives as SARS 3CLpro inhibitors. BMC Chemistry. 2023;17(1):32. doi: 10.1186/s13065-023-00947-w
[6] Lorenz S, Amsel AK, Puhlmann N, Reich M, Olsson O, Kümmerer K. Toward application and implementation of
in silico tools and workflows within benign by design approaches. ACS Sustainable Chemistry & Engineering.
2021;9(37):12461-75. doi: 10.1021/acssuschemeng.1c03070
[1] Zhao P, Peng Y, Xu X, Wang Z, Wu Z, Li W, et al. In silico prediction of mitochondrial toxicity of chemicals
using machine learning methods. Journal of Applied Toxicology. 2021;41(10):1518-26. doi:10.1002/jat.4141
[8] Azimi A, Ahmadi S, Kumar A, Qomi M, Almasirad A. SMILES-based QSAR and molecular docking study of
oseltamivir derivatives as influenza inhibitors. Polycyclic aromatic compounds. 2022;43(4):3257-3277. doi:
10.1080/10406638.2022.2067194
[9] Nikkar M, Sayyadikordabadi R, Alizadeh O, Ghasemi G. Lipophilicity and biological activity study of several
caspofungin antifungal drugs using QSAR and Monte Carlo methods. Iranian Journal of Chemistry and Chemical
Engineering. 2022;41(12):4132-4150. doi: 10.30492/IJCCE.2022.535892.4880
[10] Ahmadi S, Ghanbari H, Lotfi S, Azimi N. Predictive QSAR modeling for the antioxidant activity of natural compounds
derivatives based on Monte Carlo method. Molecular Diversity. 2021;25(1):87-97. doi: 10.1007/s11030-019-10026-9
[11] Shahin A, Roohallah K, Maryam M. Prediction of anti-cancer activity of 1,8-naphthyridin derivatives by using
of genetic algorithm-stepwise multiple linear regression. 2018;28(3):181-194. doi: [12] Ahmadi S, Moradi Z, Kumar A, Almasirad A. SMILES-based QSAR and molecular docking study of xanthone
derivatives as α-glucosidase inhibitors. Journal of Receptors and Signal Transduction. 2022;42(4):361-372. doi:
10.1080/10799893.2021.1957932
[13] Hamzehali H, Lotfi S, Ahmadi S, Kumar P. Quantitative structure–activity relationship modeling for predication
of inhibition potencies of imatinib derivatives using SMILES attributes. Scientific Reports. 2022;12(1):21708.
doi: 10.1038/s41598-022-26279-8
23
[14] Ahmadi S, Abdolmaleki A, Jebeli Javan M. In silico study of natural antioxidants. Vitam Horm. 2023;121:1-43.
doi: 10.1016/bs.vh.2022.09.001
[15] Ghiasi T, Ahmadi S, Ahmadi E, Talei Bavil Olyai M, Khodadadi Z. The index of ideality of correlation: QSAR
studies of hepatitis C virus NS3/4A protease inhibitors using SMILES descriptors. SAR and QSAR in
Environmental Research. 2021;32(6):495-520. doi: 10.1080/1062936X.2021.192534410.29252/iau.28.3.181
[1] Migliaccio R, Cacciamani F. The temporal lobe in typical and atypical Alzheimer disease. Handb Clin Neurol. 2022;187:449-66. doi: 10.1016/B978-0-12-823493-8.00004-3
[2] Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015-The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International (ADI); 2015.
[3] Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63-75.e2. doi: 10.1016/j.jalz.2012.11.007
[4] Khan H, Amin S, Kamal MA, Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomedicine & Pharmacotherapy. 2018;101:860-70. doi: 10.1016/j.biopha.2018.03.007
[5] Soleymani N, Ahmadi S, Shiri F, Almasirad A. QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CLpro inhibitors. BMC Chemistry. 2023;17(1):32. doi: 10.1186/s13065-023-00947-w
[6] Lorenz S, Amsel AK, Puhlmann N, Reich M, Olsson O, Kümmerer K. Toward application and implementation of in silico tools and workflows within benign by design approaches. ACS Sustainable Chemistry & Engineering. 2021;9(37):12461-75. doi: 10.1021/acssuschemeng.1c03070
[1] Zhao P, Peng Y, Xu X, Wang Z, Wu Z, Li W, et al. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods. Journal of Applied Toxicology. 2021;41(10):1518-26. doi:10.1002/jat.4141
[8] Azimi A, Ahmadi S, Kumar A, Qomi M, Almasirad A. SMILES-based QSAR and molecular docking study of oseltamivir derivatives as influenza inhibitors. Polycyclic aromatic compounds. 2022;43(4):3257-3277. doi: 10.1080/10406638.2022.2067194
[9] Nikkar M, Sayyadikordabadi R, Alizadeh O, Ghasemi G. Lipophilicity and biological activity study of several caspofungin antifungal drugs using QSAR and Monte Carlo methods. Iranian Journal of Chemistry and Chemical Engineering. 2022;41(12):4132-4150. doi: 10.30492/IJCCE.2022.535892.4880
[10] Ahmadi S, Ghanbari H, Lotfi S, Azimi N. Predictive QSAR modeling for the antioxidant activity of natural compounds derivatives based on Monte Carlo method. Molecular Diversity. 2021;25(1):87-97. doi: 10.1007/s11030-019-10026-9
[11] Shahin A, Roohallah K, Maryam M. Prediction of anti-cancer activity of 1,8-naphthyridin derivatives by using of genetic algorithm-stepwise multiple linear regression. 2018;28(3):181-194. doi: 10.29252/iau.28.3.181
[12] Ahmadi S, Moradi Z, Kumar A, Almasirad A. SMILES-based QSAR and molecular docking study of xanthone derivatives as α-glucosidase inhibitors. Journal of Receptors and Signal Transduction. 2022;42(4):361-372. doi: 10.1080/10799893.2021.1957932
[13] Hamzehali H, Lotfi S, Ahmadi S, Kumar P. Quantitative structure–activity relationship modeling for predication of inhibition potencies of imatinib derivatives using SMILES attributes. Scientific Reports. 2022;12(1):21708. doi: 10.1038/s41598-022-26279-8
[14] Ahmadi S, Abdolmaleki A, Jebeli Javan M. In silico study of natural antioxidants. Vitam Horm. 2023;121:1-43. doi: 10.1016/bs.vh.2022.09.001
[15] Ghiasi T, Ahmadi S, Ahmadi E, Talei Bavil Olyai M, Khodadadi Z. The index of ideality of correlation: QSAR studies of hepatitis C virus NS3/4A protease inhibitors using SMILES descriptors. SAR and QSAR in Environmental Research. 2021;32(6):495-520. doi: 10.1080/1062936X.2021.1925344
[16] Ghasedi N, Ahmadi S, Ketabi S, Almasirad A. DFT based QSAR study on quinolone-triazole derivatives as antibacterial agents. Journal of Receptors and Signal Transduction. 2022;42(4):418-428. doi: 10.1080/10799893.2021.1988971
[17] Ahmadi S, Mardinia F, Azimi N, Qomi M, Balali E. Prediction of chalcone derivative cytotoxicity activity against MCF-7 human breast cancer cell by Monte Carlo method. Journal of Molecular Structure. 2019;1181:305-311. doi: 10.1016/j.molstruc.2018.12.089
[18] Luo W, Chen Y, Wang T, Hong C, Chang LP, Chang CC, et al. Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorganic & medicinal chemistry. 2016;24(4):672-680. doi: 10.1016/j.bmc.2015.12.031
[19] Luo W, Su Y-B, Hong C, Tian RG, Su LP, Wang YQ, et al. Design, synthesis and evaluation of novel 4-dimethylamine flavonoid derivatives as potential multi-functional anti-Alzheimer agents. Bioorganic & medicinal chemistry. 2013;21(23):7275-7282. doi: 10.1016/j.ejmech.2016.06.022
[20] Singh M, Kaur M, Singh N, Silakari O. Exploration of multi-target potential of chromen-4-one based compounds in Alzheimer’s disease: Design, synthesis and biological evaluations. Bioorganic & Medicinal Chemistry. 2017;25(24):6273-6285. doi: 10.1016/j.bmc.2017.09.012
[21] Shen Y, Zhang J, Sheng R, Dong X, He Q, Yang B, et al. Synthesis and biological evaluation of novel flavonoid derivatives as dual binding acetylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry. 2009;24(2):372-380. doi: 10.1080/14756360802187885
[22] Li RS, Wang XB, Hu XJ, Kong LY. Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters. 2013;23(9):2636-2641. doi: 10.1016/j.bmcl.2013.02.095
[23] Ghaedi A. Predicting the cytotoxicity of ionic liquids using QSAR model based on SMILES optimal descriptors. Journal of Molecular Liquids. 2015;208:269-279. doi: 10.1016/j.molliq.2015.04.049
[24] Benfenati E, Toropov AA, Toropova AP, Manganaro A, Gonella Diaza R. CORAL software: QSAR for anticancer agents. Chemical biology & drug design. 2011;77(6):471-476. DOI: 10.1111/j.1747-0285.2011.01117.x
[25] Das NR, Sharma T, Mallick A, Toropova AP, Toropov AA, Achary PGR. Computational approach in designing and development of novel inhibitors of AKR1C1. In: Swarnkar T, Patnaik S, Mitra P, Misra S, Mishra M, editors. Ambient Intelligence in Health Care. Singapoor: Springer; 2023. p. 325-337. doi: 10.1007/978-981-19-6068-0_32
[26] Toropova AP, Toropov AA. CORAL: QSAR models for carcinogenicity of organic compounds for male and female rats. Computational biology and chemistry. 2018;72:26-32. doi: 10.1016/j.compbiolchem.2017.12.012
[27] Singh R, Kumar P, Devi M, Lal S, Kumar A, Sindhu J, et al. Monte Carlo based QSGFEAR: prediction of Gibb's free energy of activation at different temperatures using SMILES based descriptors. New Journal of Chemistry. 2022;46(39):19062-19072. doi: 10.1039/D2NJ03515D
[28] Ahmadi S, Lotfi S, Kumar P. Quantitative structure–toxicity relationship models for predication of toxicity of ionic liquids toward leukemia rat cell line IPC-81 based on index of ideality of correlation. Toxicology Mechanisms and Methods. 2022;32(4):302-312. doi: 10.1080/15376516.2021.2000686
[29] Ahmadi S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Chemosphere. 2020;242:125192. doi: 10.1016/j.chemosphere.2019.125192
[30] Golbraikh A, Tropsha A. Beware of q2!. Journal of Molecular Graphics and Modelling. 2002;20(4):269-276. doi: 10.1016/S1093-3263(01)00123-1
[31] Roy PP, Roy K. QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Chemical Biology & Drug Design. 2009;73(4):442-455. doi: 10.1111/j.1747-0285.2009.00791.x
[32] Rücker C, Rücker G, Meringer M. y-Randomization and its variants in QSPR/QSAR. Journal of chemical information and modeling. 2007;47(6):2345-2357. doi: 10.1021/ci700157b
[33] Taslimi P, Caglayan C, Gulcin İ. The impact of some natural phenolic compounds on carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α‐glycosidase enzymes: An antidiabetic, anticholinergic, and antiepileptic study. Journal of Biochemical and Molecular Toxicology. 2017;31(12):21995. doi: 10.1002/jbt.21995
[34] Cuong NM, Khanh PN, Nhung LTH, Ha NX, Huong TT, Bauerova K, et al. Acetylcholinesterase inhibitory activities of some flavonoids from the root bark of Pinus krempfii Lecomte: in vitro and in silico study. Journal of Biomolecular Structure and Dynamics. 2024;42(9):4888-4901. doi: 10.1080/07391102.2023.2223664
[35] Balkis A, Tran K, Lee YZ, Balkis KN, Ng K. Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor. Journal of Agricultural Science. 2015;7(9):26-35. doi:10.5539/jas.v7n9p26
[36] Goel N, Garg A, Nagendra C, Reddy AM, Biswas R, Natarajan R, et al. In-vitro and in-silico cholinesterase inhibitory activity of bioactive molecules isolated from the leaves of Andrographis nallamalayana JL Ellis and roots of Andrographis beddomei CB Clarke. Journal of Molecular Structure. 2024;1301:137406. doi: 10.1016/j.molstruc.2023.137406
[37] Xie Y, Yang W, Chen X, Xiao J. Inhibition of flavonoids on acetylcholine esterase: Binding and structure–activity relationship. Food & Function. 2014;5(10):2582-2589. doi: 10.1039/c4fo00287c
[38] Goyal M, Grover S, Dhanjal JK, Goyal S, Tyagi C, Grover A. Molecular modelling studies on flavonoid derivatives as dual site inhibitors of human acetyl cholinesterase using 3D-QSAR, pharmacophore and high throughput screening approaches. Medicinal Chemistry Research. 2014;23:2122-2132. doi: 10.1007/s00044-013-0810-2
[39] Das S, Laskar MA, Sarker SD, Choudhury MD, Choudhury PR, Mitra A, et al. Prediction of anti‐Alzheimer's activity of flavonoids targeting acetylcholinesterase in silico. Phytochemical Analysis. 2017;28(4):324-331. doi: 10.1002/pca.2679
[40] Muthukumaran P, Rajiniraja M. MIA-QSAR based model for bioactivity prediction of flavonoid derivatives as acetylcholinesterase inhibitors. Journal of Theoretical Biology. 2018;459:103-110. doi: 10.1016/j.jtbi.2018.09.030
[41] Karmakar A, Ambure P, Mallick T, Das S, Roy K, Begum NA. Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure–activity relationship. Medicinal Chemistry Research. 2019;28:723-741. doi: 10.1007/s00044-019-02330-8
[42] Soufi H, Moussaoui M, Baammi S, Baassi M, Salah M, Daoud R, et al. Multi-combined QSAR, molecular docking, molecular dynamics simulation, and ADMET of flavonoid derivatives as potent cholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics. 2024;42(12):6027-6041. doi: 10.1080/07391102.2023.2238314
[43] Nour H, Hashmi MA, Belaidi S, Errougui A, El Kouali M, Talbi M, et al. Design of acetylcholinesterase inhibitors as promising anti‐Alzheimer's agents based on QSAR, molecular docking, and molecular dynamics studies of liquiritigenin derivatives. ChemistrySelect. 2023;8(32):e202301466. doi: 10.1002/slct.202301466