تهیه و به کارگیری مشتق کالیکسآرن بسترسازی شده بر سیلیکا برای کاهش گرمااندوزی آمیزههای لاستیکی مورداستفاده در رویه تایر
محورهای موضوعی : شیمی کاربردیسیده نازنین سادات منصوری 1 , سعید تقوایی گنجه علی 2 * , رضا زادمرد 3
1 - دانشجوی دکترای شیمی آلی، دانشکده شیمی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
2 - استاد شیمی آلی، دانشکده شیمی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
3 - استاد شیمی آلی، پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران
کلید واژه: کالیکسآرن, لاستیک, حرارتاندوزی, آنالیز حرارتی مکانیکی و دینامیکی, آمیزه رویه تایر,
چکیده مقاله :
در این پژوهش، ابتدا کلروسولفونیل کالیکس[٤]آرن بسترسازی شده بر سیلیکا (SS-CSC[4]A) تهیه شد و سپس اثر آن به عنوان عامل کمک فرایند بر کاهش گرمااندوزی در آمیزه رویه تایر خودرو سواری بررسی شد. بدین منظور، آمیزه شاهد بر پایه دو کائوچویSBR و PBR به همراه سایر اجزای آمیزهکاری در نظر گرفته شد. سپس پنج آمیزه دیگر تهیه شدند که در آن ها از رزینهایC5 ،G90 ،SP1068 ، پاراترشیوبوتیل فنل و SS-CSC[4]A به عنوان عامل های کمک فرایند استفاده شد. ساختار SS-CSC[4]A با روشهای تجزیه عنصری، طیف سنجی ATR-FTIR، تجزیه وزنسنجی گرمایی (TGA) و طیف سنجی 29Si-NMR بررسی و شناسایی شد. آزمونهای کلاسیک فناوری لاستیک شامل آزمون شارش سنجی، آزمون کشش و آنالیز گرمایی مکانیکی و دینامیکی (DMTA) انجام شد. نتیجه های به دست آمده از آزمون DMTA حاکی از کاهش مقدار ضریب اتلاف آمیزه حاوی SS-CSC[4]A در دمای C° 90 در مقایسه با سایر آمیزهها است، که نشانگر کاهش گرمااندوزی در این آمیزه است. بنابراین، میتوان نتیجه گرفت که تایرهای حاوی SS-CSC[4]A به دلیل دارابودن گرمااندوزی پایینتر، مصرف سوخت کمتری را نیز خواهند داشت.
In this research, a unique structure of silica-supported chlorosulfonyl calix[4]arene (SS-CSC[4]A) was synthesized and applied as a processing aid agent in tire tread formulation. A reference compound based on SBR/BR and other ingredients were considered. Then five other compounds were prepared in which resins C5, G90, SP1068, para-tert-Butylphenol, and the synthesized derivative of calix[4]arene were used as processing aid agents. Multiple characterization techniques such as elemental analysis, Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and 29Si CP/MAS spectroscopy were used to characterize SS-CSC[4]A structure. The classical rubber technology tests including rheological test, tensile test, and dynamic-mechanical-thermal analysis (DMTA) were done. DMTA results showed a great decrease in tan δ values of the compound containing SS-CSC[4]A at 90 °C compared to other compounds, which means that constructed tires with this unique structure of SS-CSC[4]A as processing aid agents will consume less fuel for lower heat build-up.
[1] Liu, L.; Ramakrishna, S.; “An Introduction to Circular Economy”, Springer Nature, Berlin, 2021.
[2] Huang, R.; Pan, Q.; Chen, Z.; Feng, K.; Applied Sciences 10(13), 4478, 2020.
[3] Jeon, K.; Yoo, Y.; Lee, J.; Jung, D.; Lim, S.; Park, S.; World Electric Vehicle Journal 7, 414-419, 2015.
[4] Hirata, Y.; Kondo, H.; Ozawa, Y., “Natural rubber (NR) for the tyre industry”, Elsevier, Woodhead Publishing, 325-352, 2014.
[5] Muraki, T.; Ishikawa, Y.; U.S. Patent 5,500,482, 1996.
[6] Rao, G. V.; Mouli, S.C.; Boddeti, N.K.; Int. J. Eng. Technol. 2, 87-92, 2010.
[7] Masand N.B.; India Rub Tech Expo, Mysore, India 90, 2004.
[8] Kim, K.J.; VanderKooi, J.; ACS, Rubber Division, 2001.
[9] Rodgers, B.; Waddell, W.; “The science of rubber compounding” in: “Science and Technology of Rubber (Third Edition)”, 401-454, Academic Press, U.S., 2005.
[10] Gutsche, C.D.; Accounts of Chemical Research 16, 161-170, 1983.
[11] Shinkai, S.; Pure and Applied Chemistry 59, 425-430, 1987.
[12] Peczuh, M.W.; Hamilton, A.D.; Chemical Reviews 100, 2479-2494, 2000.
[13] Yin, H.; Hamilton, A.D.; Angewandte Chemie International Edition 44, 4130-4163, 2005.
[14] Taghvaei-Ganjali, S.; Zadmard, R.; Supramolecular Chemistry 20, 527-530, 2008.
[15] Shinkai, S.; Tetrahedron 49, 8933-8968, 1993.
[16] Servati, Z.; Saber-Tehrani, M.; Taghvaei-Ganjali, S.; Zadmard, R.; Journal of Porous Materials 25, 1463-1474, 2018.
[17] Mohamadi, H.; Motiee, F.; Taghvaei-Ganjali, S.; Saber-Tehrani, M.; Acta Chimica Slovenica 68, 128-136, 2021.
[18] Pekachaki, H.M.; Taghvaei-Ganjali, S.; Motiee, F.; Saber-Tehrani, M.; Rubber Chemistry and Technology 92, 467-480, 2019.
[19] Li, H.; Zhong, Y.; Wu, W.; Zhang, L.; Lai, X.; Zeng, X.; Journal of Applied Polymer Science 134, 45144, 2017.
[20] Taghvaei-Ganjali, S.; Zadmard, R.; Saber-Tehrani, M.; Applied surface science 258, 5925-5932, 2012.
[21] Gutsche, C.D.; Iqbal, M.; Organic Syntheses 68, 234-234, 2003.
[22] Coquière, D.; Cadeau, H.; Rondelez, Y.; Giorgi, M.; Reinaud, O.; The Journal of Organic Chemistry 71, 4059-4065, 2006.
[23] Radi, S.; Attayibat, A.; Ramdani, A.; Bacquet, M.; European Polymer Journal 44, 3163-3168, 2008.
[24] Tabakci, M.; Journal of Inclusion Phenomena and Macrocyclic Chemistry 61, 53-60, 2008.
[25] Huang, H.; Zhao, C.; Ji, Y.; Nie, R.; Zhou, P.; Zhang, H.; Journal of Hazardous Materials 178, 680-685, 2010.
[26] Tian, R.; Sun, J.; Zhang, H.; Ye, M.; Xie, C.; Dong, J.; Hu, J.; Ma, D.; Bao, X.; Zou, H.; Electrophoresis 27, 742-748, 2006.
[27] Suzuki, T.M.; Nakamura, T.; Sudo, E.; Akimoto, Y.; Yano, K.; Microporous and Mesoporous Materials 111, 350-358, 2008.
[28] Healy, L.O.; Owens, V.P.; O'Mahony, T.; Srijaranai, S.; Holmes, J.D.; Glennon, J.D.; Fischer, G.; Albert, K.; Analytical Chemistry 75, 5860-5869, 2003.
[29] Sindorf, D.W.; Maciel, G.E.; Journal of the American Chemical Society 105, 3767-3776, 1983.
[30] Vansant, E.F.; Van Der Voort, P.; Vrancken, K.C.; ''Characterization and Chemical Modification of the Silica Surface'', Elsevier, 1995.
[31] Hua, J.; Liu, K.; Wang, Z.; Geng, J.; Wang, X.; Journal of Applied Polymer Science 135, 45975, 2018.
[32] Sirisinha, C.; Sae‐oui, P.; Suchiva, K.; Thaptong, P.; Journal of Applied Polymer Science 137, 48696, 2020.
[33] Liu, X.; Zhao, S.; Zhang, X.; Li, X.; Bai, Y.; Polymer 55, 1964-1976, 2014.
[34] Roshanaei, H.; Khodkar, F.; Alimardani, M.; Iranian Polymer Journal 29, 901-909, 2020.
[35] Ahmadi-Shooli, S.; Tavakoli, M.; Journal of Macromolecular Science, Part B 58, 619-633, 2019.
_||_[1] Liu, L.; Ramakrishna, S.; “An Introduction to Circular Economy”, Springer Nature, Berlin, 2021.
[2] Huang, R.; Pan, Q.; Chen, Z.; Feng, K.; Applied Sciences 10(13), 4478, 2020.
[3] Jeon, K.; Yoo, Y.; Lee, J.; Jung, D.; Lim, S.; Park, S.; World Electric Vehicle Journal 7, 414-419, 2015.
[4] Hirata, Y.; Kondo, H.; Ozawa, Y., “Natural rubber (NR) for the tyre industry”, Elsevier, Woodhead Publishing, 325-352, 2014.
[5] Muraki, T.; Ishikawa, Y.; U.S. Patent 5,500,482, 1996.
[6] Rao, G. V.; Mouli, S.C.; Boddeti, N.K.; Int. J. Eng. Technol. 2, 87-92, 2010.
[7] Masand N.B.; India Rub Tech Expo, Mysore, India 90, 2004.
[8] Kim, K.J.; VanderKooi, J.; ACS, Rubber Division, 2001.
[9] Rodgers, B.; Waddell, W.; “The science of rubber compounding” in: “Science and Technology of Rubber (Third Edition)”, 401-454, Academic Press, U.S., 2005.
[10] Gutsche, C.D.; Accounts of Chemical Research 16, 161-170, 1983.
[11] Shinkai, S.; Pure and Applied Chemistry 59, 425-430, 1987.
[12] Peczuh, M.W.; Hamilton, A.D.; Chemical Reviews 100, 2479-2494, 2000.
[13] Yin, H.; Hamilton, A.D.; Angewandte Chemie International Edition 44, 4130-4163, 2005.
[14] Taghvaei-Ganjali, S.; Zadmard, R.; Supramolecular Chemistry 20, 527-530, 2008.
[15] Shinkai, S.; Tetrahedron 49, 8933-8968, 1993.
[16] Servati, Z.; Saber-Tehrani, M.; Taghvaei-Ganjali, S.; Zadmard, R.; Journal of Porous Materials 25, 1463-1474, 2018.
[17] Mohamadi, H.; Motiee, F.; Taghvaei-Ganjali, S.; Saber-Tehrani, M.; Acta Chimica Slovenica 68, 128-136, 2021.
[18] Pekachaki, H.M.; Taghvaei-Ganjali, S.; Motiee, F.; Saber-Tehrani, M.; Rubber Chemistry and Technology 92, 467-480, 2019.
[19] Li, H.; Zhong, Y.; Wu, W.; Zhang, L.; Lai, X.; Zeng, X.; Journal of Applied Polymer Science 134, 45144, 2017.
[20] Taghvaei-Ganjali, S.; Zadmard, R.; Saber-Tehrani, M.; Applied surface science 258, 5925-5932, 2012.
[21] Gutsche, C.D.; Iqbal, M.; Organic Syntheses 68, 234-234, 2003.
[22] Coquière, D.; Cadeau, H.; Rondelez, Y.; Giorgi, M.; Reinaud, O.; The Journal of Organic Chemistry 71, 4059-4065, 2006.
[23] Radi, S.; Attayibat, A.; Ramdani, A.; Bacquet, M.; European Polymer Journal 44, 3163-3168, 2008.
[24] Tabakci, M.; Journal of Inclusion Phenomena and Macrocyclic Chemistry 61, 53-60, 2008.
[25] Huang, H.; Zhao, C.; Ji, Y.; Nie, R.; Zhou, P.; Zhang, H.; Journal of Hazardous Materials 178, 680-685, 2010.
[26] Tian, R.; Sun, J.; Zhang, H.; Ye, M.; Xie, C.; Dong, J.; Hu, J.; Ma, D.; Bao, X.; Zou, H.; Electrophoresis 27, 742-748, 2006.
[27] Suzuki, T.M.; Nakamura, T.; Sudo, E.; Akimoto, Y.; Yano, K.; Microporous and Mesoporous Materials 111, 350-358, 2008.
[28] Healy, L.O.; Owens, V.P.; O'Mahony, T.; Srijaranai, S.; Holmes, J.D.; Glennon, J.D.; Fischer, G.; Albert, K.; Analytical Chemistry 75, 5860-5869, 2003.
[29] Sindorf, D.W.; Maciel, G.E.; Journal of the American Chemical Society 105, 3767-3776, 1983.
[30] Vansant, E.F.; Van Der Voort, P.; Vrancken, K.C.; ''Characterization and Chemical Modification of the Silica Surface'', Elsevier, 1995.
[31] Hua, J.; Liu, K.; Wang, Z.; Geng, J.; Wang, X.; Journal of Applied Polymer Science 135, 45975, 2018.
[32] Sirisinha, C.; Sae‐oui, P.; Suchiva, K.; Thaptong, P.; Journal of Applied Polymer Science 137, 48696, 2020.
[33] Liu, X.; Zhao, S.; Zhang, X.; Li, X.; Bai, Y.; Polymer 55, 1964-1976, 2014.
[34] Roshanaei, H.; Khodkar, F.; Alimardani, M.; Iranian Polymer Journal 29, 901-909, 2020.
[35] Ahmadi-Shooli, S.; Tavakoli, M.; Journal of Macromolecular Science, Part B 58, 619-633, 2019.