نانومواد در تولید هیدروژن سبز: دیدگاههای فنی پیرامون انتخاب نانومواد، ویژگیها، روشهای تولید و کاربردهای تجاری
محورهای موضوعی : شیمی کاربردی
مجید میرزایی
1
*
,
طیبه محبی
2
,
مسعود همدانیان
3
1 - استادیار گروه پژوهشی مواد غیرفلزی، پژوهشگاه نیرو، تهران، ایران
2 - دانشجوی دکتری گروه نانوشیمی، دانشگاه کاشان، کاشان، ایران.
3 - دانشیار گروه نانوشیمی، دانشگاه کاشان، کاشان، ایران.
کلید واژه: انرژی, هیدروژن سبز, نانومواد, تولید, ذخیرهسازی, فتوسنتز.,
چکیده مقاله :
هیدروژن بهدلیل فراوانی و ویژگیهای برجستهاش، گزینهای دلخواه برای بسیاری از کاربردهای انرژی بشمار میرود. ذخیرهسازی و تولید آن بهعنوان اولویتهای توسعهای مطرح شدهاند. همچنین، نقش نانومواد در تولید، ذخیرهسازی و استفاده تجاری هیدروژن بسیار مهم است. این مقاله به بررسی ویژگیهای انرژی هیدروژن، هیدروژن سبز، نانومواد مورداستفاده برای تولید، روشهای تولید آنها و کاربردهای تجاری پرداخته است. در ابتدا، یک مرور کلی بر انرژی هیدروژن و ویژگیهای اصلی آن ارائه و سپس، اهمیت هیدروژن سبز به دقت بررسی شده است. افزونبر استفاده از نانومواد در تولید هیدروژن سبز، به روشهای تولید نانومواد نیز توجه شده است. ارزیابیهای فنی و اقتصادی و امکانات استفاده از هیدروژن در کاربردهای انرژی نیز مطالعه شده است. استفاده از نانوذرههای سازگار با محیطزیست برای تولید هیدروژن به جای نانوذرههای شیمیایی میتواند به کاهش هزینههای عملیاتی کمک کند. استفاده دوباره از نانوذرهها با استفاده از روشهای محبوسسازی نیز یک راه ممکن برای صرفهجویی در هزینهها است. در پایان، برپایه نتیجههای پژوهش، جهتگیریهای آینده تشریح شدهاند.هیدروژن بهدلیل فراوانی و ویژگیهای برجستهاش، گزینهای دلخواه برای بسیاری از کاربردهای انرژی بشمار میرود. ذخیرهسازی و تولید آن بهعنوان اولویتهای توسعهای مطرح شدهاند. همچنین، نقش نانومواد در تولید، ذخیرهسازی و استفاده تجاری هیدروژن بسیار مهم است. این مقاله به بررسی ویژگیهای انرژی هیدروژن، هیدروژن سبز، نانومواد مورداستفاده برای تولید، روشهای تولید آنها و کاربردهای تجاری پرداخته است. در ابتدا، یک مرور کلی بر انرژی هیدروژن و ویژگیهای اصلی آن ارائه و سپس، اهمیت هیدروژن سبز به دقت بررسی شده است. افزونبر استفاده از نانومواد در تولید هیدروژن سبز، به روشهای تولید نانومواد نیز توجه شده است. ارزیابیهای فنی و اقتصادی و امکانات استفاده از هیدروژن در کاربردهای انرژی نیز مطالعه شده است. استفاده از نانوذرههای سازگار با محیطزیست برای تولید هیدروژن به جای نانوذرههای شیمیایی میتواند به کاهش هزینههای عملیاتی کمک کند. استفاده دوباره از نانوذرهها با استفاده از روشهای محبوسسازی نیز یک راه ممکن برای صرفهجویی در هزینهها است. در پایان، برپایه نتیجههای پژوهش، جهتگیریهای آینده تشریح شدهاند.
Hydrogen production has garnered significant attention due to increased awareness of the depletion of fossil fuel resources. Storage and production have been highlighted as developmental priorities. Additionally, the role of nanomaterials in the production, storage, and commercial use of hydrogen is of great importance. This article examineed the energy characteristics of hydrogen, green hydrogen, nanomaterials used for production, their production methods, and commercial applications. Initially, a general overview of hydrogen energy and its main characteristics was provided. Then, the importance of green hydrogen was carefully reviewed. Besides using nanomaterials in green hydrogen production, nanomaterials' production methods were also considered. Technical and economic evaluations and the possibilities of using hydrogen in well-known energy applications were studied. Using environmentally friendly nanoparticles for hydrogen production instead of chemical nanoparticles can help reduce operational costs. Reusing nanoparticles through entrapment methods is also possible to save on cost. In conclusion, future directions based on the research findings are outlined
1. Fan Z, Zhang X, Li Y, Guo X, Jin Z. Construct 3D NiCo-LDH/Cu2O pn heterojunction via electrostatic self-assembly for enhanced photocatalytic hydrogen evolution. Journal of Industrial and Engineering Chemistry. 2022;110:491-502.
2[1] Fan Z, Zhang X, Li Y, Guo X, Jin Z. Construct 3D NiCo-LDH/Cu2O pn heterojunction via electrostatic self-assembly for enhanced photocatalytic hydrogen evolution. Journal of Industrial and Engineering Chemistry. 2022;110:491-502. doi: 10.1016/j.jiec.2022.03.027
[2] Mirzaee M, Mohebbi T, Rezakhani D. A Comprehensive review of the corrosion and erosion resistant coating on the fireside in power plant boilers. Farayandno. 2023;18(82):73-93. doi: 10.22034/farayandno.2023.2001252.1920
[3] Yaman H, Yesilyurt MK, Uslu S. Simultaneous optimization of multiple engine parameters of a 1-heptanol/gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach. Energy. 2022;238:122019. doi: 10.1016/j.energy.2021.122019
[4] Dincer I. Green methods for hydrogen production. International Journal of Hydrogen Energy. 2012;37(2):1954-71. doi: 10.1016/j.ijhydene.2011.03.173
[5] Mirzaee M, Mohebbi T. A review of anti-corrosion and erosion protective coatings in offshore wind power devices. Journal of Studies in Color World. 2024;14(2):133-59. doi: 10.30509/jscw.2024.82001
[6] Rosen MA, Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment. 2016;1:10-29. doi: 10.1007/s40974-016-0005-z
[7] Pourhashem S, Seif A, Zhou Z, Ji X, Sgroi MF, Duan J, et al. Theoretical and experimental investigations about the role of MXene nanosheets covered with ZnO quantum dots on barrier resistance of epoxy coatings. Journal of Environmental Chemical Engineering. 2024;12(1):111869. doi: 10.1016/j.jece.2023.111869
[8] Mirzaee M, Dehghanian C. Flower-like mesoporous nano NiCo2O4-decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor. Materials Research Bulletin. 2019;109:10-20. doi: 10.1016/j.materresbull.2018.09.020
[9] Dincer I, Zamfirescu C. Sustainable hydrogen production options and the role of IAHE. International Journal of Hydrogen Energy. 2012;37(21):16266-86. doi: 10.1016/j.ijhydene.2012.02.133
10. Mirzaee M, Dehghanian C. Pulsed electrodeposition of reduced graphene oxide on NiNiO foam electrode for high-performance supercapacitor. International Journal of Hydrogen Energy. 2018;43(27):12233-50. doi: 10.1016/j.ijhydene.2018.04.173
[11] Zhang Y, Ying Z, Zhou J, Liu J, Wang Z, Cen K. Electrolysis of the Bunsen reaction and properties of the membrane in the sulfur–iodine thermochemical cycle. Industrial & Engineering Chemistry Research. 2014;53(35):13581-8. doi: 10.1021/ie502275s
[12] Roessler PG, Lien S. Activation and de novo synthesis of hydrogenase in Chlamydomonas. Plant Physiology. 1984;76(4):1086-9. doi: 10.1104/pp.76.4.1086
[13] McCarty RD, Hord J, Roder HM. Selected properties of hydrogen (engineering design data), NBS monograph 168. US: National Bureau of Standards; 1981.
[14] Dawood F, Anda M, Shafiullah G. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy. 2020;45(7):3847-69. doi: 10.1016/j.ijhydene.2019.12.059
[15] Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science. 2019;12(2):463-91. doi: 10.1039/C8EE01157E
[16] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews. 2017;67:597-611. doi: 10.1016/j.rser.2016.09.044
[17] Majumdar A, Deutch JM, Prasher RS, Griffin TP. A framework for a hydrogen economy. Joule. 2021;5(8):1905-8. doi: 10.1016/j.joule.2021.07.007
[18] Zhou Y, Li R, Lv Z, Liu J, Zhou H, Xu C. Green Hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering. 2022;43:2-13. doi: 10.1016/j.cjche.2022.02.001
[19] Ko DH, Kang SC, Lee CW, Im JS. Effects of support porosity of Co-Mo/MgO catalyst on methane catalytic decomposition for carbon and hydrogen production. Journal of Industrial and Engineering Chemistry. 2022;112:162-70. doi: 10.1016/j.jiec.2022.05.008
[20] Oliveira AM, Beswick RR, Yan Y. A green hydrogen economy for a renewable energy society. Current Opinion in Chemical Engineering. 2021;33:100701. doi: 10.1016/j.coche.2021.100701
[21] Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S. A review on nanomaterials for environmental remediation. Energy & Environmental Science. 2012;5(8):8075-109. doi: 10.1039/C2EE21818F
[22] Yeo M-K, Nam D-H. Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: A comparison of TiO2 nanoparticles and nanotubes. Environmental Pollution. 2013;178:166-72. doi: 10.1016/j.envpol.2013.03.040
[23] Mirzaee M, Dehghanian C, Sabet Bokati K. ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors. Applied Surface Science. 2018;436:1050-60. doi: 10.1016/j.apsusc.2017.12.145
[24] Mirzaee M, Dehghanian C. Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Journal of the Iranian Chemical Society. 2019;16(2):283-92. doi: 10.1007/s13738-018-1505-x
[25] Mirzaee M, Rashidi A, Zolriasatein A, Rezaei Abadchi M. A simple, low cost, and template-free method for synthesis of boron nitride using different precursors. Ceramics International. 2021;47(5):5977-84. doi: 10.1016/j.ceramint.2020.10.171
[26] Mirzaee M, Rashidi A, Zolriasatein A, Rezaei Abadchi M. Solid-state synthesis and characterization of two-dimensional hexagonal BCN nanosheet using a free template method. Diamond and Related Materials. 2021;115:108350. doi: 10.1016/j.diamond.2021.108350
[27] Zhou G, Goshi E, He Q. Micro/Nanomaterials‐augmented hydrogen therapy. Advanced Healthcare Materials. 2019;8(16):1900463. doi: 10.1002/adhm.201900463
[28] Bhanja P, Bhaumik A. Porous nanomaterials as green catalyst for the conversion of biomass to bioenergy. Fuel. 2016;185:432-41. doi: 10.1016/j.fuel.2016.08.004
[29] Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK. Nanomaterials for hydrogen storage applications: A review. Journal of Nanomaterials. 2008;950967:1-9. doi: 10.1155/2008/950967
[30] Mirzaee M, Vaezi M, Palizdar Y. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Materials Science and Engineering: C. 2016;69:675-84. doi: 10.1016/j.msec.2016.07.057
[31] Alaqad K, Saleh TA. Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol. 2016;6(4):525-2161. doi: 10.4172/2161-0525.1000384
[32] Janardhanan R, Karuppaiah M, Hebalkar N, Rao TN. Synthesis and surface chemistry of nano silver particles. Polyhedron. 2009;28(12):2522-30. doi: 10.1016/j.poly.2009.05.038
[33] Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: A review of current toxicological data. Particle and fibre toxicology. 2013;10:1-33. doi: 10.1186/1743-8977-10-15
[34] Schwarz JA, Contescu CI, Putyera K. Dekker encyclopedia of nanoscience and nanotechnology. US: CRC press; 2004.
[35] Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection. 2012;35:64-70. doi: 10.1016/j.cropro.2012.01.007
[36] Pourhashem S, Seif A, Saba F, Nezhad EG, Ji X, Zhou Z, et al. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies. Journal of Materials Science & Technology. 2022;118:73-113. doi: 10.1016/j.jmst.2021.11.061
[37] Mirzaee M, Seif A, Rashidi A, Silvestrelli PL, Zhou Z, Pourhashem S, et al. Investigating the effect of PDA/KH550 dual functionalized h-BCN nanosheets and hybrided with ZnO on corrosion and fouling resistance of epoxy coating: Experimental and DFT studies. Journal of Environmental Chemical Engineering. 2022;10(6):108746. doi: 10.1016/j.jece.2022.108746
[38] Gruere GP, Narrod CA, Abbott L. Agriculture, food, and water nanotechnologies for the poor: Opportunities, constraints, and role of the Consultative Group on International Agricultural Research. Netherlands: IFPRI Discussion Paper 1064; 2011.
[39] Gajanan K, Tijare S. Applications of nanomaterials. Materialstoday: Proceedings. 2018;5(1):1093-6. doi: 10.1016/j.matpr.2017.11.187
[40] Chen C, Zhou Y, Fang H, Peng X, Jiang L. Progress and challenges in energy storage and utilization via ammonia. Surface Science and Technology. 2023;1(1):13. doi: 10.1007/s44251-023-00013-6
[41] Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL. Nanomaterials and the environment: A review for the biennium 2008–2010. Journal of hazardous materials. 2011;186(1):1-15. doi: 10.1016/j.jhazmat.2010.11.020
[42] Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A. Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering. 2014;8:471-82. doi: 10.1007/s11783-014-0654-0
[43] Ostadi M, Paso KG, Rodriguez-Fabia S, Øi LE, Manenti F, Hillestad M. Process integration of green hydrogen: Decarbonization of chemical industries. Energies. 2020;13(18):4859. doi: 10.3390/en13184859
[44] Dagdougui H. Models, methods and approaches for the planning and design of the future hydrogen supply chain. International Journal of Hydrogen Energy. 2012;37(6):5318-27. doi: 10.1016/j.ijhydene.2011.08.041
[45] Froudakis GE. Hydrogen storage in nanotubes & nanostructures. Materials Today. 2011;14(7-8):324-8. doi: 10.1016/S1369-7021(11)70162-6
[46] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy. 2007;32(9):1121-40. doi: 10.1016/j.ijhydene.2006.11.022
[47] Bouaricha S, Dodelet J, Guay D, Huot J, Boily S, Schulz R. Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling. Journal of Alloys and Compounds. 2000;297(1-2):282-93. doi: 10.1016/j.ijhydene.2006.11.022
[48] Glenk G, Reichelstein S. Economics of converting renewable power to hydrogen. Nature Energy. 2019;4(3):216-22. doi: 10.1038/s41560-019-0326-1
[49] Adnan N, Nordin SM, Bahruddin MA, Tareq AH. A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: Assessing farmers behavior. Trends in Food Science & Technology. 2019;86:439-52. doi: 10.1016/j.tifs.2019.02.040
[50] Ahmed A, He P, He P, Wu Y, He Y, Munir S. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. Environment international. 2023;173:107819. doi: 10.1016/j.envint.2023.107819
[51] ul Ain Q, Hussain HA, Zhang Q, Rasheed A, Imran A, Hussain S, et al. Chapter thirteen-Use of nano-fertilizers to improve the nutrient use efficiencies in plants. In: Aftab T, Hakeem KR, editors. Sustainable plant nutrition. US: Academic Press 2023. p. 299-321. doi: 10.1016/B978-0-443-18675-2.00013-4
[52] Tamhankar S, Green hydrogen by pyroreforming of glycerol. In: Hydrogen Systems: Enabling Energy Solutions. 19th World Hydrogen Energy Conference; 2012 Jun 3-7; Toronto, Canada. Elsevier Procedia; 2013.
[53] Palys MJ, Daoutidis P. Optimizing renewable ammonia production for a sustainable fertilizer supply chain transition. ChemSusChem. 2023;16(22):e202300563. doi: 10.1002/cssc.202300563
[54] Dubas ST, Pimpan V. Green synthesis of silver nanoparticles for ammonia sensing. Talanta. 2008;76(1):29-33. doi: 10.1016/j.talanta.2008.01.062
[55] Qureshi S, Mumtaz M, Chong FK, Mukhtar A, Saqib S, Ullah S, et al. A review on sensing and catalytic activity of nano-catalyst for synthesis of one-step ammonia and urea: Challenges and perspectives. Chemosphere. 2022;291:132806. doi: 10.1016/j.chemosphere.2021.132806
[56] Valente A, Iribarren D, Dufour J. Life cycle assessment of hydrogen energy systems: A review of methodological choices. The International Journal of Life Cycle Assessment. 2017;22:346-63. doi: 10.1007/s11367-016-1156-z
[57] Peng B, Tang J, Luo J, Wang P, Ding B, Tam KC. Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of Chemical Engineering. 2018;96(1):91-100. doi: 10.1002/cjce.23042
[58] Singh R, Altaee A, Gautam S. Nanomaterials in the advancement of hydrogen energy storage. Heliyon. 2020;6(7):e04487. doi: 10.1016/j.heliyon.2020.e04487
[59] Zhao G, Nielsen ER, Troncoso E, Hyde K, Romeo JS, Diderich M. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. International Journal of Hydrogen Energy. 2019;44(19):9517-28. doi: 10.1016/j.ijhydene.2018.08.015
[60] Heijungs R. Chain management by life cycle assessment (CMLCA). Journal of Environmental Science and Sustainable Development.2003;3:1-29. doi: org/10.7454/jessd.v3i1.1045
[61] Ajanovic A, Sayer M, Haas R. The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy. 2022;47(57):24136-54. doi: 10.1016/j.ijhydene.2022.02.094
[62] Muradov NZ, Veziroğlu TN. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. International Journal of Hydrogen Energy. 2008;33(23):6804-39. doi: 10.1016/j.ijhydene.2008.08.054
[63] Dash SK, Chakraborty S, Roccotelli M, Sahu UK. Hydrogen fuel for future mobility: Challenges and future aspects. Sustainability. 2022;14(14):8285. doi: 10.3390/su14148285