سنتز نانوچندسازه نیکل- مس بهعنوان یک ماده آندی کارآمد در پیل سوختی الکلی به¬کمک تابش ریزموج برای اکسایش الکتروکاتالیستی متانول
محورهای موضوعی : شیمی کاربردیمحمد علی کامیابی 1 * , بابک جلیلیان 2
1 - استاد تمام گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران.
2 - دانشجوی کارشناس ارشد گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران.
کلید واژه: پیل سوختی, تابش ریزموج, اکسایش الکتروکاتالیستی متانول, بسپار رسانا, ملامین,
چکیده مقاله :
در این مطالعه، نانوچندسازههای دو فلزی نیکل ـ مس و کاهش گرافن اکسید بهطور همزمان با بهکارگیری تابش ریزموج سنتز و کارایی کاتالیستی آنها بررسی شد. روش سنتز پیشنهادی یک فرایند ساده، سریع و قابلواپایش بشمار میرود. رفتار الکتروشیمیایی کاتالیست سنتزشده برای واکنش اکسایش متانول (MOR) در محیط قلیایی بررسی شد. اثر ملامین بر فعالیت الکتروکاتالیستی نمونه سنتزشده با روشهای آمپرولتسنجی چرخهای (CV)، زمان-آمپرسنجی (CA) و طیفسنجی رهبندی الکتروشیمیایی (EIS) مطالعه شد. استفاده از ملامین بهعنوان منبع نیتروژن برای دوپهشدن نیتروژن در شبکه گرافن اکسید کاهشیافته تا حدی منجر به تشکیل ساختارهای NiCu-N شد. این پیوند فلز-نیتروژن موجب افزایش فعالیت کاتالیستی نسبت به MOR شد. اثر ملامین با افزایش 203 میکروآمپری در جریان و کاهش 20 میلیولتی در پتانسیل شروع در مقایسه با سایر کاتالیستهای شاهد سنتزشده در طی فعالیت MOR، تایید شد. نتیجهها نشاندهنده کارایی عالی کاتالیست سنتزشده بهعنوان آند در پیل سوختی مستقیم متانول بود.
: In this study, the synthesis and application of bimetallic nickel-copper nanocomposites and reduction of graphene oxide simultaneously using microwaves were performed. The proposed synthesis method is a simple, fast and controllable process. The electrochemical behavior of the synthesized catalyst was investigated for methanol oxidation reaction (MOR) in alkaline medium. The effect of melamine on the electrocatalytic activity of the synthesized catalyst was studied by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) methods. Also, investigating the effect of melamine as a source of nitrogen leading to nitrogen doping in the reduced graphene oxide network showed that it partially had led to the formation of NiCu-N structures. The metal-nitrogen bond increased the catalytic activity towards MOR. The promoting effect of melamine was proved by an increase of 203 μA in the current and a decrease of 20 mV in the onset potential compared to other synthesized control catalysts during MOR activity. The results indicated the excellent performance of the synthesized catalyst as an anode in a direct methanol fuel cell.
[1] Staff JCE. Batteries and fuel cells. Journal of Chemical Education.1978;55(6):399. doi: 10.1021/ed055p399
[2] Sharaf OZ, Orhan MF. An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews. 2014;32:810-853. doi: org/10.1016/j.rser.2014.01.012
[3] Brett CMA, Brett AMO. Electrochemistry: Principles, Methods, and Applications. Oxford: Oxford university press; 1993.
[4] Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors?. Chemical Reviews. 2004;104(10):4245-4270. doi: 10.1021/cr020730k
[5] Kamyabi MA. Tadayyon-Nosratabad E, Jadali S. A sponge like Pd arrays on Ni foam substrate: Highly active non-platinum electrocatalyst for methanol oxidation in alkaline media. Materials Chemistry and Physics. 2020;257:123626. doi: org/10.1016/j.matchemphys.2020.123626
[6] Jadali S, Kamyabi MA, Solla-Gullón J, Herrero E. Effect of Pd on the Electrocatalytic Activity of Pt towards oxidation of ethanol in alkaline solutions. Appl. Sci. 2021;11(3):1315. doi: org/10.3390/app11031315
[7] Kamyabi MA, Jadali S. Rational design of PdCu nanoparticles supported on a templated Ni foam: The cooperation effect of morphology and composition for electrocatalytic oxidation of ethanol. International Journal of Hydrogen Energy. 2021;46(79):39387-39403. doi: org/10.1016/j.ijhydene.2021.06.106
[8] Kamyabi MA, Hashemi Heris MK, Jadali S. Easy approach for decorating of poly 4-aminithiophenol with Pd nanoparticles: An efficient electrocatalyst for ethanol oxidation in alkaline media. Journal of Solid State Electrochemistry 2021;25:1283–1292. doi: 10.1007/s10008-021-04903-3
[9] Kamyabi MA, Ebrahimi‑Qaratapeh K, Moharramnezhad M. Silica template as a morphology controlling agent for deposition of platinum nanostructure on 3D-Ni-foam and its superior electrocatalytic performance towards methanol oxidation. Journal of Porous Materials. 2020. doi.org/10.1007/s10934-020-01001-z
[10] Edlund D. Methanol fuel cell systems: Advancing towards commercialization. Singapore: Pan Stanford Publishing Pte. Ltd.; 2011; doi: 10.4032/9789814303149
[11] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 1997;38(4):445-457. doi: org/10.1016/S0920-5861(97)00054-0
[12] O'Hayre R, Cha S-W, Colella W, Prinz FB. Fuel Cell Fundamentals. US: John Wiley & Sons; 2016. doi: 10.1002/9781119191766
[13] Catherin Sesu D, Patil I, Lokanathan M, Parse H, Marbaniang P, Kakade B. Low density three-dimensional metal foams as significant electrocatalysts toward methanol oxidation reaction. ACS Sustainable Chemistry & Engineering. 2018;6(2):2062-2068. doi: 10.1021/acssuschemeng.7b03480
[14] Samanta S, Bhunia K, Pradhan D, Satpati B, Srivastava R. NiCuCo2O4 supported Ni–Cu ion-exchanged mesoporous zeolite heteronano architecture: An efficient, stable, and economical nonprecious electrocatalyst for methanol oxidation. ACS Sustainable Chemistry & Engineering. 2018;6(2):2023-2036, doi: 10.1021/acssuschemeng.7b03444
[15] Jadali S, Kamyabi MA, Alizadeh T. The supported forest-like structure of PtSn as an effective deterrent for acetaldehyde formation during the electrocatalytic oxidation of ethanol. Fuel. 2022;325:124780. doi: 10.1016/j.fuel.2022.124780
[16] Xie LJ, Wu J-F, Chen C-M, Zhang C-M, Wan L, Wang J-L, et al. A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. Journal of Power Sources. 2013;242:148-156. doi: 10.1016/j.jpowsour.2013.05.081
[17] He Q, Li Q, Khene S, Ren X, Lopez F, Lozano-Castello D, et al. High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells. The Journal of Physical Chemistry C. 2013;117(17):8697-8707. doi: 10.1021/jp401814f
[18] Solano E, Perez-Mirabet L, Martinez-Julian F, Guzman R, Arbiol J, Puig T, et al. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles. Journal of Nanoparticle Research. 2012;14(8):1034. doi: 10.1007/s11051-012-1034-y
[19] Hu X, Yu JC, Gong J, Li Q, Li G. α-Fe2O3 Nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials. 2007;19(17):2324-2329. doi: org/10.1002/adma.200602176
[20] Su YL, Cheng SH. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film. Anal Chim Acta. 2015;901:41-50. doi: 10.1016/j.aca.2015.10.026
[21] Sepehri Z, Bagheri H, Ranjbari E, Amiri-Aref M, Amidi S, Rouini M, et al. Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode. Ionics. 2018;24:1253-1263. doi: 10.1007/s11581-017-2263-y
[22] Leon A, Advincula Rigoberto C. Chapter 11 - Conducting polymers with superhydrophobic effects as anticorrosion coating. In: Tiwari A, Rawlins J, Hihara LH, Eds. Intelligent coatings for corrosion control. Boston: Butterworth-Heinemann; 2015. p.409-430. doi: 10.1016/B978-0-12-411467-8.00011-8.
[23] Liu J, Huanping Yang AB. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. doi:10.1039/C3RA41366G
[24] Jasuja K, Linn J, Melton S, Berry V. Microwave-reduced uncapped metal nanoparticles on graphene: Tuning catalytic, electrical, and raman properties. The Journal of Physical Chemistry Letters, 2010;1(12):1853-1860. doi: 10.1021/jz100580x
[25] Sharma S. Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. The Journal of Physical Chemistry C. 2010;114(45):19459-19466. doi: 10.1021/jp107872z
[26] Kim Y, Cho ES, Park SJ, Kim S. One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior. Journal of Industrial and Engineering Chemistry. 2015;33:108-114. doi: org/10.1016/j.jiec.2015.09.023
[27] Lambert JB, Gronert S, Shurvell HF, Lightner D, Cooks, RG. Organic structural spectroscopy, 2nd Edition. UK: Pearson; 2010.
[28] Kaur J, Rani S. CuO/NiO nano-composite synthesized from banana peels for grow light. Materials Today: Proceedings. 2023;91(2):1-6.
[29] Chen Z, He YC, Chen JH, Fu XZ, Sun R, Chen Y, et al. PdCu alloy flower-like nanocages with high electrocatalytic performance for methanol oxidation, J. Phys. Chem. C 2018;122:8976-83. doi: org/10.1021/acs.jpcc.8b01095
[30] Bandarenka AS. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy, Analyst 2013;138:5540-54. doi: org/10.1039/c3an00791j