بررسی اثر محیط غرقاب و خشک بر ظهور نواحی ژنی کنترل کننده صفات گیاهچههای برنج (Oryza sativa L.) با استفاده از نشانگرهای SSR
محورهای موضوعی : ژنتیکبهاره قاسمی 1 , حسین صبوری 2 * , حسین حسینی مقدم 3 , عباس بیابانی 4 , محمد جواد شیخ زاده 5
1 - گروه تولیدات گیاهی، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد کاووس، ایران
2 - گروه تولیدات گیاهی، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد کاووس، ایران
3 - گروه تولیدات گیاهی، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد کاووس، ایران
4 - گروه تولیدات گیاهی، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد کاووس، ایران
5 - گروه کامپیوتر، دانشکده علوم پایه و فنی مهندسی دانشگاه گنبد کاووس، گنبد کاووس، ایران
کلید واژه: تنوع ژنتیکی, تنش خشکی, برنج, گیاهچه, تجزیه ارتباط,
چکیده مقاله :
شناسایی ژنهای مرتبط با تحمل به تنشها و مکانیسمهای تحمل به آنها یک عامل مهم برای ایجاد مقاومت در گیاهان است. بههمین منظور؛ آزمایشی با استفاده از 99 ژنوتیپ برنج در سه تکرار در قالب طرح کاملاً تصادفی در شرایط غرقاب و تنش خشکی در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه گنبد کاووس در سال 1397 اجرا شد. در شرایط غرقاب در طول دوره رشد گیاه آبیاری انجام شد. برای اعمال تنش خشکی، آبیاری از مرحله سه برگی قطع شد. با توجه به منحنی رطوبت، میزان تنش 2 درصد رطوبت وزنی معادل 55/0- مگا پاسکل تخمین زده شد. صفات ارزیابی شده در هر دو شرایط کشت تفاوت معنیداری با هم داشتند. تجزیه ارتباط اطلاعات بهدست آمده از آزمایشهای مولکولی و بررسیهای فنوتیپی در شرایط غرقاب نشاندهنده این موضوع بود که از میان آللها، آلل RM129A با وزن تر ساقه و طول ریشه و آلل RM129G با وزنتر ریشه و عرض بزرگترین برگ و آلل RM129B با وزن خشک ریشه و طول بزرگترین برگ و آلل RM1029I با وزن خشک ساقه و طول بزرگترین برگ و در شرایط تنش خشکی آلل RM1029G با وزن خشک ساقه، حجم ریشه و تعداد ریشه دارای بیشترین ارتباط با صفتهای مورد ارزیابی در آزمایش بودند. پرایمر RM1029 یکی از پرایمرهای مهم در مرحله گیاهچه شناسایی شد. از نتایج حاصل از این پژوهش میتوان در جهت افزایش تحمل به خشکی ارقام برنج استفاده نمود.
Identification of genes related to stresses tolerance and mechanisms of tolerance is an important factor for developing tolerant plants. For this purpose, an experiment was conducted based on completely random design with three replications with 99 rice genotypes under flooding and drought stress at Gonbad Kavous University in 2018. To apply drought stress, irrigation was stopped at the three-leaf stage. According to the humidity curve, the stress level of 2% by weight moisture was estimated to be -0.55 MPa. Significant differences were detected between traits in both conditions. The result of association analysis of molecular and phenotype studies under flooding condition revealed that among the alleles, the RM129A allele with stem fresh weight and root length, the RM129G allele with root fresh weight and the width of the largest leaf, the RM129B allele with root dry weight and the length of the largest leaf, the RM1029I allele with stem dry weight and the length of the largest leaf, and under the drought condition, the RM1029G allele with stem dry weight, root volume, and the number of roots were maximally associated with the relevant traits under study. RM1029 was recognized as one of the most important primers at the seedling stage. The results of this research can be used to increase drought tolerance in rice varieties.
Aghazadeh, R., Gharayazi, B., Nematzadeh, B.C. and Babaeian, N. (2004). Classification of Iranian rice germplasm by RAPD markers. Journal of Agricultural Science. 3: 757-767.
An, Z.W., Xie, L.L, Cheng H., Zhou, Y., Zhang, Q. and He, X.G. (2009). A silver staining procedure for nucleic acids in polyacrylamide gels without fixation and pretreatment. Analytical Biochemistry. 391 (1): 77-9.
Anbumalarmathi, J. and Mehta, P. (2013). Effect of Salt Stress on germination of indica rice varieties. Electronical Journal of Biotechnology Seince. 6(1): 1-6.
Bernier, J., Kumar, A., Ramaiah, V., Spaner, D. and Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Journal of Crop Science. 47(2): 507–518.
Diwan, J.M., Channbyregowda, V., Shenoy, P. and Salimath, B., Hat, R. (2013). Molecular mapping of early vigor related QTLs in rice. Research Journal of Biological. 1: 24-30.
Dixit, S., Singh, A. and Kumar, A. (2014). Rice breeding for high grain yield under drought: a strategic solution to a complex problem International Journal of Agronomy. 14:1–15.
Donde, R., Kumar, J., Gouda, G., KumarGupta, M., Mukherjee, M., YasinBaksh, Sk., Mahadani, P., KumarSahoo, K., Behera, L. and KumarDash, S. (2019). Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers. Rice Science. 26(4): 239-247.
Hussain, Z., Othman, A.M., and Othman, A.S. (2011). Association of Commercial Rice Varieties with Weedy Rice Accessions (Oryza sativa) in Pulau Pinang's Rice Granary Area. Tropical Life Sciences Research. 22(2): 1–11.
Karamanos, A.J. and Papatheohari, A.Y. (1999). Assessment of drought resistanceof crop genotypes by means of thewater potential index. Crop Science. 39: 1792-1797.
Khodabandeh, N. Cereals. (1995). Tehran University Press.
Kumar, A., Basu, S., Ramegowda, V. and Pereira, A. (2017). University of Arkansas, USA. Mechanisms of drought tolerance in rice. University of Arkansas, USA, pp:131-163.
Kumar, A., Dixit, S., Ram, T., Yadaw, R.B., Mishra, K.K. and Mandal, N.P. (2014). Breeding highyielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany. 65 (21): 6265–78.
Lafitte, H R., Ismail, A. and Bennet, J. (2004). Abiotic stress tolerance in rice for Asia: progress and the future, in New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress, Brisbane. Australia
Lanceras, J.C., Pantuwan, G., Jongdee, B. and Toojinda, T. (2004). Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology. 135: 384–99.
Mohammad Alagh, Sh., Sabouri, H. and Dadars, A.R. (2014). Relationship analysis for rice root characteristics in drought stress conditions, 16th national conference of rice, Sari, Genetics and biotechnology and agriculture research center of Tabarestan, Faculty of Agricultural Sciences and Natural Resources, Sari.
Mohammad Allagh, Sh., Sabouri, H. (2014). Relationship analysis for rice root characteristics in drought stress conditions. Proceedings of the Sixteenth National Conference on Rice. Faculty of Agricultural Sciences and Natural Resources, Sari, Genetics and Agricultural Technology Biotechnology Research Center, Tabarestan.
Ndjiondjop, M.N., Cisse, F., Futakuchi, K., Lorieux, M., Manneh, B., Bocco, R. and Fatondji, B. (2010). Effect of drought on rice (Oryza spp.) genotypes according to their drought tolerance level. Innovation and Partnerships to Realize Africa’s Rice Potential, Second Africa Rice Congress, Bamako, Mali, 22-26.
Park, G.H., Kim, J.H. and Kim, K.M. (2014). QTL analysis of yield components in rice using a cheongcheong/nagdong doubled haploid genetic map. American Journal of Plant Sciences. 5: 1174-1180.
Raiesi, T., and Sabouri, A. (2015). Validation and association analysis of microsatellite markers related to drought and salinity tolerance in aerobic and Iranian rice under osmotic stress. Crop Biotechnology. 10: 57-72.
Sabouri, A., Dadras, A.R., Khoshchehreh, H., Vatanparast, A., and Aflatouni, H. (2019). Investigation of rice recombinant inbred lines based on drought tolerance usingtolerance indices and SSR markers. Iranian Journal Field Crop Science. 4: 13-24.
Sabouri, A., Sabouri, H., and Dadras, A.R. (2013). Association analysis of closely linked markers to major QTLs Saltol and SKC1 and salt tolerance-related traits in rice varieties. Cereal Research. 3(1): 53-68.
Sabouri, H., Gilaki, J., Jafarzadeh, M.R. and Sabouri, A. (2011). Investigation of adaptation of ricevarieties tolerant to drought stress in the Gonbad. Proceedings of the First National Congress on Science and Technology of Agriculture. September 10-12, Zanjan University, Zanjan, Iran. pp: 290-293.
Saghi Maroof, M.A., Biyaoshev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. (1994). Extra ordinarily polymorphic microsatellites DNA in barly species diversity, chromosomal location, and population dynamics. Processing of the academy of sciences, USA, 91: 4566-5570. Science. 6 (12): 355- 363
Sandhu, N. and Kumar, A. (2017). Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and Their Use in Breeding Programs. Agronomy. 7-27.
Skaria, R., Sen, S. and Muneer, P. (2011). Analysis of genetic variability in rice varieties (Oryza sativa L.) of Kerala using RAPD marker. Genetic Engineering and Biotechnology Journal. 10: 1-9.
Soroush, R., Mesbah, H., Hossein-Zadeh, H. and Bozorgypoor, A. (2005). Study of Phenotypic and genetic variation for quantitative and qualitative trait in rice. Seed and Plant. 20: 167-182.
Swamy, B.P.M., Shamsudin, N.A.A., Rahman, S.N.A., Mauleon, R., Ratnam, W., Teressa Sta, M., Kumar, C. and Kumar, A. (2017). Association Mapping of Yield and Yieldrelated Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). Rice. 10:21.
Tabkhkar, N., Rabiei, B., Samizadeh Lahiji, H. and Hosseini Chaleshtori, M. (2018). Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice. Biochemical Genetics. 56(4): 356-374.
Tuyen, D.D. and Prasad, D.T. (2008). Evaluating difference of yield treat among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice. 16: 24-33.
Venuprasad, R., Dalid, CO., Del Valle, M., Zhao, D., Espiritu, M., Sta Cruz, M.T., Amante, M., Kumar, A. and Atlin, G.N. (2009). Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and Applied Genetics. 120:177–190.
Vikram, P., Swamy, M. B.P., Dixit, S.H., Ahmed, H.U., Cruz1, M.T.S., Kumar Singh, A. and Kumar, A. (2011). qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics. 12(89):1-15.
Youssef, M.A., Mansour, A. and Solliman, S. (2010). Molecular markers for new promising drought tolerant lines of rice under drought stress via RAPD-PCR and ISSR markers. Journal of American Science. 6(12):355-363.
Zhou, J., You, A., Ma, Z., Zhu, L. and He, G. (2012). Association analysis of important agronomic traits in japonica rice germplasm. African Journal of Biotechnology. 11(12): 2957-2970.
Golsharkhi, M., Biabani, A., Sabouri, H., Mohammad Esmaili, M. (2015). Studying the relationship between agronomic Traits of rice under flooding and drought stress. Environmental Stresses in Agricultural Sciences. 2(8):204-191.
Aghazadeh, R., Gharayazi, B., Nematzadeh, B.C. and Babaeian, N. (2004). Classification of Iranian rice germplasm by RAPD markers. Journal of Agricultural Science. 3: 757-767.
An, Z.W., Xie, L.L, Cheng H., Zhou, Y., Zhang, Q. and He, X.G. (2009). A silver staining procedure for nucleic acids in polyacrylamide gels without fixation and pretreatment. Analytical Biochemistry. 391 (1): 77-9.
Anbumalarmathi, J. and Mehta, P. (2013). Effect of Salt Stress on germination of indica rice varieties. Electronical Journal of Biotechnology Seince. 6(1): 1-6.
Bernier, J., Kumar, A., Ramaiah, V., Spaner, D. and Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Journal of Crop Science. 47(2): 507–518.
Diwan, J.M., Channbyregowda, V., Shenoy, P. and Salimath, B., Hat, R. (2013). Molecular mapping of early vigor related QTLs in rice. Research Journal of Biological. 1: 24-30.
Dixit, S., Singh, A. and Kumar, A. (2014). Rice breeding for high grain yield under drought: a strategic solution to a complex problem International Journal of Agronomy. 14:1–15.
Donde, R., Kumar, J., Gouda, G., KumarGupta, M., Mukherjee, M., YasinBaksh, Sk., Mahadani, P., KumarSahoo, K., Behera, L. and KumarDash, S. (2019). Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers. Rice Science. 26(4): 239-247.
Hussain, Z., Othman, A.M., and Othman, A.S. (2011). Association of Commercial Rice Varieties with Weedy Rice Accessions (Oryza sativa) in Pulau Pinang's Rice Granary Area. Tropical Life Sciences Research. 22(2): 1–11.
Karamanos, A.J. and Papatheohari, A.Y. (1999). Assessment of drought resistanceof crop genotypes by means of thewater potential index. Crop Science. 39: 1792-1797.
Khodabandeh, N. Cereals. (1995). Tehran University Press.
Kumar, A., Basu, S., Ramegowda, V. and Pereira, A. (2017). University of Arkansas, USA. Mechanisms of drought tolerance in rice. University of Arkansas, USA, pp:131-163.
Kumar, A., Dixit, S., Ram, T., Yadaw, R.B., Mishra, K.K. and Mandal, N.P. (2014). Breeding highyielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany. 65 (21): 6265–78.
Lafitte, H R., Ismail, A. and Bennet, J. (2004). Abiotic stress tolerance in rice for Asia: progress and the future, in New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress, Brisbane. Australia
Lanceras, J.C., Pantuwan, G., Jongdee, B. and Toojinda, T. (2004). Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology. 135: 384–99.
Mohammad Alagh, Sh., Sabouri, H. and Dadars, A.R. (2014). Relationship analysis for rice root characteristics in drought stress conditions, 16th national conference of rice, Sari, Genetics and biotechnology and agriculture research center of Tabarestan, Faculty of Agricultural Sciences and Natural Resources, Sari.
Mohammad Allagh, Sh., Sabouri, H. (2014). Relationship analysis for rice root characteristics in drought stress conditions. Proceedings of the Sixteenth National Conference on Rice. Faculty of Agricultural Sciences and Natural Resources, Sari, Genetics and Agricultural Technology Biotechnology Research Center, Tabarestan.
Ndjiondjop, M.N., Cisse, F., Futakuchi, K., Lorieux, M., Manneh, B., Bocco, R. and Fatondji, B. (2010). Effect of drought on rice (Oryza spp.) genotypes according to their drought tolerance level. Innovation and Partnerships to Realize Africa’s Rice Potential, Second Africa Rice Congress, Bamako, Mali, 22-26.
Park, G.H., Kim, J.H. and Kim, K.M. (2014). QTL analysis of yield components in rice using a cheongcheong/nagdong doubled haploid genetic map. American Journal of Plant Sciences. 5: 1174-1180.
Raiesi, T., and Sabouri, A. (2015). Validation and association analysis of microsatellite markers related to drought and salinity tolerance in aerobic and Iranian rice under osmotic stress. Crop Biotechnology. 10: 57-72.
Sabouri, A., Dadras, A.R., Khoshchehreh, H., Vatanparast, A., and Aflatouni, H. (2019). Investigation of rice recombinant inbred lines based on drought tolerance usingtolerance indices and SSR markers. Iranian Journal Field Crop Science. 4: 13-24.
Sabouri, A., Sabouri, H., and Dadras, A.R. (2013). Association analysis of closely linked markers to major QTLs Saltol and SKC1 and salt tolerance-related traits in rice varieties. Cereal Research. 3(1): 53-68.
Sabouri, H., Gilaki, J., Jafarzadeh, M.R. and Sabouri, A. (2011). Investigation of adaptation of ricevarieties tolerant to drought stress in the Gonbad. Proceedings of the First National Congress on Science and Technology of Agriculture. September 10-12, Zanjan University, Zanjan, Iran. pp: 290-293.
Saghi Maroof, M.A., Biyaoshev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. (1994). Extra ordinarily polymorphic microsatellites DNA in barly species diversity, chromosomal location, and population dynamics. Processing of the academy of sciences, USA, 91: 4566-5570. Science. 6 (12): 355- 363
Sandhu, N. and Kumar, A. (2017). Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and Their Use in Breeding Programs. Agronomy. 7-27.
Skaria, R., Sen, S. and Muneer, P. (2011). Analysis of genetic variability in rice varieties (Oryza sativa L.) of Kerala using RAPD marker. Genetic Engineering and Biotechnology Journal. 10: 1-9.
Soroush, R., Mesbah, H., Hossein-Zadeh, H. and Bozorgypoor, A. (2005). Study of Phenotypic and genetic variation for quantitative and qualitative trait in rice. Seed and Plant. 20: 167-182.
Swamy, B.P.M., Shamsudin, N.A.A., Rahman, S.N.A., Mauleon, R., Ratnam, W., Teressa Sta, M., Kumar, C. and Kumar, A. (2017). Association Mapping of Yield and Yieldrelated Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). Rice. 10:21.
Tabkhkar, N., Rabiei, B., Samizadeh Lahiji, H. and Hosseini Chaleshtori, M. (2018). Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice. Biochemical Genetics. 56(4): 356-374.
Tuyen, D.D. and Prasad, D.T. (2008). Evaluating difference of yield treat among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice. 16: 24-33.
Venuprasad, R., Dalid, CO., Del Valle, M., Zhao, D., Espiritu, M., Sta Cruz, M.T., Amante, M., Kumar, A. and Atlin, G.N. (2009). Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and Applied Genetics. 120:177–190.
Vikram, P., Swamy, M. B.P., Dixit, S.H., Ahmed, H.U., Cruz1, M.T.S., Kumar Singh, A. and Kumar, A. (2011). qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics. 12(89):1-15.
Youssef, M.A., Mansour, A. and Solliman, S. (2010). Molecular markers for new promising drought tolerant lines of rice under drought stress via RAPD-PCR and ISSR markers. Journal of American Science. 6(12):355-363.
Zhou, J., You, A., Ma, Z., Zhu, L. and He, G. (2012). Association analysis of important agronomic traits in japonica rice germplasm. African Journal of Biotechnology. 11(12): 2957-2970.
Golsharkhi, M., Biabani, A., Sabouri, H., Mohammad Esmaili, M. (2015). Studying the relationship between agronomic Traits of rice under flooding and drought stress. Environmental Stresses in Agricultural Sciences. 2(8):204-191.