تأثیر قارچ میکوریزای Piriformospora indica بر روی رشد و برخی شاخصهای فیزیولوژیکی گیاه گشنیز (Coriandrum sativum)
محورهای موضوعی : ژنتیکعلی اصغر حاتم نیا 1 * , کبری موسی بیگی 2 , مهین توحیدی 3 , آرش بابایی 4 , مهدی قبولی 5
1 - گروه زیستشناسی، دانشکده علوم، دانشگاه ایلام، ایران
2 - گروه زیستشناسی، دانشگاه پیام نور ایلام، ایران
3 - گروه زیستشناسی، دانشگاه پیام نور ایلام، ایران
4 - گروه زیستشناسی، دانشکده علوم، دانشگاه ملایر، ایران
5 - گروه زراعت، دانشکده کشاورزی، دانشگاه ملایر، ایران
کلید واژه: کلروفیل, همزیستی, پرولین, کاروتنوئید, قارچ میکوریزا, گشنیز,
چکیده مقاله :
قارچ میکوریزای Piriformospora indica از طریق جذب آب و مواد معدنی باعث تحریک رشد و افزایش زیست توده گیاهان میزبان می شود. به منظور بررسی اثر قارچ میکوریزای P. indica بر روی رشد و برخی شاخص های فیزیولوژیکی گیاه گشنیز، طرحی در قالب بلوک کامل تصادفی با تیمار گیاهان تلقیح شده با قارچ و گیاهان شاهد با 15 تکرار در سال 1394 در شرایط گلخانه انجام شد. نتایج نشان داد که طول اندام هوایی، طول ریشه و وزن خشک گیاه در گیاهان تلقیح شده با قارچ به طور معنی داری بیشتر از گیاهان شاهد بود. نتایج حاصل از تجزیه واریانس داده ها نشان داد که کاربرد قارچ میکوریزای P. indica سبب افزایش محتوای پرولین شده، به طوری که میزان پرولین در گیاهان تلقیح شده با قارچ میکوریز 09/2 برابر گیاهان شاهد بود. نتایج به دست آمده از این تحقیق نشان داد که تلقیح گیاه با قارچ میکوریز سبب افزایش میزان رنگیزه های کلروفیل a، کلروفیل b و کاروتنوئیدها نسبت به گیاه شاهد شد و این میزان افزایش تنها در کلروفیل b و کاروتنوئیدها در سطح احتمال 5 درصد معنی دار بود. به هر حال، نتایج نشان دادند که همزیستی میکوریزایی سبب افزایش رشد و بهبود خصوصیات فیزیولوژیک گیاه گشنیز گشت.
Piriformospora indica fungi stimulates the growth and increase in the host biomass through absorption of water and minerals. In order to evaluate the effect of mycorrhizal fungus P. indica on growth and some physiological parameters of Coriandrum sativum, an experiment was conducted in a randomized complete block design through treatment of plants inoculated with mycorrhizal fungi and control plants with 15 replications in 2015 under greenhouse conditions.The results of ANOVA indicated that the shoot length, root length, and dry weight of plants inoculated with fungi were significantly higher than control plants. Also results of analysis of variance showed that the application of P. indica increased the proline content, so that the proline content in the plants inoculated with mycorrhizal fungi was 2.09 times higher than control plants. In addition, the findings of the study suggested that inoculation of the plant with P. indica increased the contents of chlorophyll a (17%), chlorophyll b (51%), and carotenoids (25%) in comparison with the control plant, where the increase was only significant in chlorophyll b and carotenoids (P≤0.05). Generally, the results indicated that mycorrhizal symbiosis increased the growth and improved the physiological characteristics of coriander.
Alizadeh, O. and Alizadeh, A. (2007). Effects of mycorrhiza in different soil moisture condition on absorption of nutrition elements in corn. Journal of Research in Agricultural Science. 3(1): 101-108.
Bagheri, A.A., Saadatmand, S., Niknam, V., Nejadsatari, T. and Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. International Journal of Advanced Biological and Biomedical Research. 1(11): 1337-1350.
Bajaj, R., Agarwal, A., Rajpal, K., Asthana, Sh., Prasad, R., Kharkwal, A., Kumar, R., Sherameti, I., Oelmüller, R. and Varma, A. (2014). Co-cultivation of Curcuma longawith Piriformospora indica enhances the yield and active ingredients. American Journal of Current Microbiology. 2(1): 1-12.
Bates, L.S., Waldern, R.P. and Tear, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F. and Kogel, K.H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences. 103(49): 18450-18457.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for sustainable development. 29(1): 185-212.
Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C. and Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12(4): 185-90.
Ghabooli, M., Khatabi, B., Ahmadi, F.S., Sepehri, M., Mirzaei, M., Amirkhani, A., Jorrín-Novo, J.V. and Salekdeh, G.H. (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. Journal of proteomics. 94: 289-301.
Ghabouli, M., Shahriary, F., Sepehrin, M., Marashi, H. and Hosseini Salekdeh, G. (2011). An evaluation of the impact of the endophyte fungus Piriformospora indica on some traits of barley (Hordeum vulgare L.) in drought stress. Journal of Agroecology. 3(3): 328-336.
Ghasemnezhad, A. and Babaeizad, V. (2011). The influence of piri fungus (Priformospora indica) on vegetative growth and the content of caffeic acid of leaves of artichoke (Cynara scolymus L.) plant. Journal of Plant Production Research. 18(1): 133-140.
Krishna, H., Singh, S.K., Sharma, R.R., Khawale, R.N., Grover, M. and Patel, V.B. (2005). Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae. 106(4): 554-567.
Kumar, M., Yadav, V., Tuteja, N. and Johri, A.K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology. 155(3): 780-790.
Kuznetsov, V.V. and Shevyakova, N.I. (1997). Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum. 100(2): 320-326.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 148: 350-382.
Moraes, R.M., De Andrade, Z., Bedir, E., Dayan, F.E., Lata, H., Khan, I. and Pereira, A.M. (2004). Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Science. 166(1): 23-29.
Rai, M. and Varma, A. (2005). Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electronic Journal of Biotechnology. 8: 1-6.
Selosse, M.A., Baudoin, E. and Vandenkoornhuyse, P. (2004). Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologies. 327: 639-648.
Smith, F.A. and Smith, S.E. (1997). Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytologist. 137: 373-388.
Tuffen, F., Eason, W.R. and Scullion, J. (2002). The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biology and Biochemistry. 34(7): 1027-1036.
Varma, A., Singh, A., Sahay, N.S., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S., Deka, D., Bharti, K. and Hurek, T. (2001). Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In Fungal Associations (pp. 125-150). Springer Berlin Heidelberg.
_||_
Alizadeh, O. and Alizadeh, A. (2007). Effects of mycorrhiza in different soil moisture condition on absorption of nutrition elements in corn. Journal of Research in Agricultural Science. 3(1): 101-108.
Bagheri, A.A., Saadatmand, S., Niknam, V., Nejadsatari, T. and Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. International Journal of Advanced Biological and Biomedical Research. 1(11): 1337-1350.
Bajaj, R., Agarwal, A., Rajpal, K., Asthana, Sh., Prasad, R., Kharkwal, A., Kumar, R., Sherameti, I., Oelmüller, R. and Varma, A. (2014). Co-cultivation of Curcuma longawith Piriformospora indica enhances the yield and active ingredients. American Journal of Current Microbiology. 2(1): 1-12.
Bates, L.S., Waldern, R.P. and Tear, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil. 39: 205-207.
Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F. and Kogel, K.H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences. 103(49): 18450-18457.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for sustainable development. 29(1): 185-212.
Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C. and Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12(4): 185-90.
Ghabooli, M., Khatabi, B., Ahmadi, F.S., Sepehri, M., Mirzaei, M., Amirkhani, A., Jorrín-Novo, J.V. and Salekdeh, G.H. (2013). Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. Journal of proteomics. 94: 289-301.
Ghabouli, M., Shahriary, F., Sepehrin, M., Marashi, H. and Hosseini Salekdeh, G. (2011). An evaluation of the impact of the endophyte fungus Piriformospora indica on some traits of barley (Hordeum vulgare L.) in drought stress. Journal of Agroecology. 3(3): 328-336.
Ghasemnezhad, A. and Babaeizad, V. (2011). The influence of piri fungus (Priformospora indica) on vegetative growth and the content of caffeic acid of leaves of artichoke (Cynara scolymus L.) plant. Journal of Plant Production Research. 18(1): 133-140.
Krishna, H., Singh, S.K., Sharma, R.R., Khawale, R.N., Grover, M. and Patel, V.B. (2005). Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae. 106(4): 554-567.
Kumar, M., Yadav, V., Tuteja, N. and Johri, A.K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology. 155(3): 780-790.
Kuznetsov, V.V. and Shevyakova, N.I. (1997). Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum. 100(2): 320-326.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 148: 350-382.
Moraes, R.M., De Andrade, Z., Bedir, E., Dayan, F.E., Lata, H., Khan, I. and Pereira, A.M. (2004). Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Science. 166(1): 23-29.
Rai, M. and Varma, A. (2005). Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electronic Journal of Biotechnology. 8: 1-6.
Selosse, M.A., Baudoin, E. and Vandenkoornhuyse, P. (2004). Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologies. 327: 639-648.
Smith, F.A. and Smith, S.E. (1997). Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytologist. 137: 373-388.
Tuffen, F., Eason, W.R. and Scullion, J. (2002). The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biology and Biochemistry. 34(7): 1027-1036.
Varma, A., Singh, A., Sahay, N.S., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S., Deka, D., Bharti, K. and Hurek, T. (2001). Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In Fungal Associations (pp. 125-150). Springer Berlin Heidelberg.