ارزیابی کارایی استفاده از تغییرات خرد اقلیم در تفکیک پوشش اراضی در مقایسه با برخی از روشهای طبقهبندی نظارتشده در محیطهای شهری خشک
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطینجمه ستاری 1 , ملیحه عرفانی 2 * , فاطمه جهانی شکیب 3
1 - دانشجوی کارشناسی ارشد- گروه محیط زیست - دانشکده منابع طبیعی - دانشگاه زابل
2 - استادیار, گروه محیطزیست، دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران
3 - استادیار.گروه محیط زیست. دانشکده منابع طبیعی و محیط زیست. دانشگاه بیرجند. بیرجند. ایران
کلید واژه: سنجش از دور, طبقهبندی خشک, خرد اقلیم, استخراج پدیدهها, مناطق خشک و نیمه خشک,
چکیده مقاله :
تفکیک بین اراضی بایر و ساخت و ساز شده از یکی از مهمترین مسائل در تهیه نقشه کاربری اراضی/ پوشش اراضی در اقلیمهای خشک و نیمهخشک است. در این راستا پژوهشگران بسیاری سعی در افزایش دقت طبقهبندی از طریق به کارگیری روشهای مختلف داشتهاند که دنبال کردن برخی از روشها پیچیده و زمانبر است. از این رو مقاله حاضر با هدف به کارگیری تغییرات خرد اقلیم از طریق اجرای الگوریتم پهنهبندی محلی اقلیم ( LCZ ) در شناسایی کاربری اراضی با تاکید بر تفکیک مناطق ساخت و ساز شده در یکی از شهرهای خشک ایران انجام شد و کارایی روش با بررسی صحت طبقهبندی در مقایسه با روشهای مختلف نظارت شده شامل حداکثر احتمال، حداقل فاصله، فیشر، KNN، Artmapفازی، شبکه عصبی مصنوعی و ماشین بردار پشتیبان مقایسه گردید. منطقه مورد مطالعه شهر زاهدان بوده که دارای رشد مناطق ساخت و ساز شده بسیار چشمگیری در دهههای گذشته است. به این منظور از چهار دوره از تصاویر ماهواره لندست هشت سال 2020 استفاده شد. نمونههای تعلیمی از گوگل ارث استخراج شد و صحتسنجی نتایج طبقهبندیها به کمک 218 نقطه تصادفی انجام شد. نتایج صحتسنجی نشان داد که استفاده از الگوریتم LCZ با صحت کلی و ضریب کاپای 33/96 درصد و 95/0 بالاترین و پس از آن روشهای ماشین بردار پشتیبان و فیشر با صحت کلی 61/87 و 03/83 و ضریب کاپای 82/0 و 75/0 قرار دارند. از اینرو برای مطالعات کاربری اراضی/پوشش اراضی روش LCZ که خرد اقلیمهای محلی را در نظر میگیرد، پیشنهاد میشود.
The distinction between barren and build-up areas is one of the most important issues in land use/land cover mapping in arid and semi-arid climates. In this regard, many researchers have tried to increase the accuracy of classification using different methods that, some of which are complex and time-consuming. Therefore, the present study conducted aimed to apply micro-climate change through the implementation of Local Climate Zoning (LCZ) algorithm in land use identification with emphasis on the separation of build-up areas in one of the arid cities of Iran, and the efficiency of the method by investigation the classification accuracy was compared with various supervised methods including maximum likelihood, minimum distance, Fisher, KNN, fuzzy, artificial neural network and support vector machine. The study area is Zahedan city, which has a very significant growth of build-up areas in recent decades. For this purpose, four periods of Landsat satellite images year 2020 were used. Training samples were extracted from Google Earth and the validation of the classification results was performed using 218 random points. The accuracy results showed that the use of LCZ algorithm with overall accuracy and kappa coefficient of 96.33% and 0.95, respectively is the highest and then the support vector machine and Fisher methods with overall accuracy of 86.61 and 83.03 and kappa coefficient of 0.82 and 0.75, respectively. Therefore, for land use / land cover studies, the LCZ method that considers the micro-climate, is proposed.
1. Abedi R. 2021. Comparison of Parametric and Non-Parametric Techniques to Accurate Classification of Forest Attributes on Satellite Image Data. Journal of Environmental Sciences Studies (JESS). 5(4): 3229-3235. http://www.jess.ir/article_119977.html?lang=en (In Persian).
2. Alshari EA. Gawali B. 2021. Development of classification system for LULC using remote sensing and GIS. Global Transitions Proceedings. 2(1): 8-17. https://doi.org/10.1016/j.gltp.2021.01.002.
3. Asghari Saraskanrood S. khodabandelo B. Naseri A. Moradi A. 2019. Extracting Land Use Map based on a comparison between Pixel-Based and Object-Oriented Classification Methods Case Study: Zanjan City. Geographical Data. 28 (110): 195- 208. https://www.sid.ir/en/journal/ViewPaper.aspx?id=686032. (In Persian).
4. Bechtel B. Alexander P. Böhner J. Ching J. Conrad O. Feddema J. Mills G. See L. Stewart I. 2015. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geo-Information. 4 (1): 199–219. doi: http://doi.org/10.3390/ijgi4010199
5. Dhingra S. Kumar D. 2019. A review of remotely sensed satellite image classification. International Journal of Electrical and Computer Engineering (IJECE). 9(3): 1720-1731. doi: http://doi.org/10.11591/ijece.v9i3.
6. Estman JR. 2020. Geospatial Monitoring and Modeling software, version 19: Clark Labs at Clark University. pp 397.
7. Fathi Zad H. Fallah Shamsi R. Mahdavi A. Arekhi S. 2015. Comparison of two classification methods of maximum probability and artificial neural network of fuzzy Art map in making Range land cover maps (case study: Range land area of Doviraj area, Dehloran). Iranian journal of Range and Desert Research. 22(1), 59-72. doi: http://doi.org/10.22092/ijrdr.2015.13223(In Persian).
8. Hastie T, Tibshirani R, Friedman J. 2001. The Elements of Statistical Learning. 2nd Edition: Data Mining, Inference, and Prediction. Springer-Verlag; New York. pp200.
9. Hurskainen P. Adhikari H. Siljander M. Pellikka PKE. Hemp A. 2019. Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes. Remote Sensing of Environment. 233: 111354. https://doi.org/10.1016/j.rse.2019.111354.
10. Latifovic R. Olthof I. 2004. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sensing of Environment. 90: 153–165. doi: http://doi.org/10.1016/j.rse.2003.11.016.
11. Li Y. Zhang H. Xue X. Jiang Y. Shen Q. 2018. Deep learning for remote sensing image classification: A survey. WIREs Data Mining and Knowledge Discovery. 8(6): e1264. doi: http://doi.org/10.1002/widm.1264.
12. Liu Y. Zhang HH. Wu Y. 2011. Hard or Soft Classification? Large-margin Unified Machines. Journal of the American Statistical Association.106(493): 166–177. https://doi.org/10.1198/jasa.2011.tm10319.
13. Manandhar R. Odeh I.O. Ancev T. 2009. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing. 1(3): 330–344. doi: https://doi.org/10.3390/rs1030330.
14. Maxwell AE. Warner T.A. Fang F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing. 30 (9): 2784–2817. doi: https://doi.org/10.1080/01431161.2018.1433343.
15. Mohan Rajan SN, Loganathan A. Manoharan P. 2020. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environ Sci Pollut Res. 27: 29900–29926 (2020). doi:https://doi.org/10.1007/s11356-020-09091-7.
16. Mountrakis G. Im J. Ogole C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3):247-59. doi: https://doi.org/10.1016/j.isprsjprs.2010.11.001.
17. Mukherjee A. Kumar A. A. Ramachandran P. 2021. Development of New Index-Based Methodology for Extraction of Built-Up Area From Landsat7 Imagery: Comparison of Performance With SVM, ANN, and Existing Indices. IEEE Transactions on Geoscience and Remote Sensing. 59( 2): 1592-1603. doi: http://doi.org/10.1109/TGRS.2020.2996777.
18. Pal S. Talukdar S. 2018. Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh. Environ. Environment, development and sustainability 22 (1): 363–382. doi: http://doi.org/ 10.1007/s10668-018-0205-0.
19. Rohani N. Moradi Faraj A. Mojaradi B. Rajaee T. Jabbari E. 2021. Investigation of land use change in Qom province along with climatic parameters using satellite remote sensing technology. Journal of RS and GIS for Natural Resources. 12(4): 28-46. doi: http://doi.org/ doi: http://doi.org/ (In Persian).
20. Salmanmahiny A, Erfani M, Danehkar A, Etemad V. 2021. Image texture indices and trend analysis for forest disturbance assessment under wood harvest regimes. Journal of Forestry Research 32(10): 579–587 (2021). doi: http://doi.org/10.1007/s11676-020-01117-7
21. Stathakis D. Perakis J. 2007. Feature Evolution for Classification of Remotely Sensed Data. IEEE Geoscience and Remote Sensing Letters. 4(3): 354-358. doi: http://doi.org/10.1109/LGRS.2007.895285.
22. Talukdar S. Singha P. Mahato S. Shahfahad Pal S. Liou Y.A. Rahman A. 2020. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations-A Review. Remote Sensing. 12: 1135. doi: http://doi.org/10.3390/rs12071135.
23. Tso B. Mather P. M. 2001. Classification Methods for Remotely Sensed Data:New York. Taylor and Francis. 114-121. doi:http://dx.doi.org/10.4324/9780203303566
24. Wang J. Shen X. Liu Y. 2008. Probability estimation for large-margin classifiers. Biometrika. 95:149–167. doi: https://doi.org/10.1093/biomet/asm077.
25. Wang W. Tran D. Feiszli M. 2020. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 12695-12705. doi: http://doi.org/
26. Wu L. Zhu X. Lawes R. Dunkerley D. Zhang H. 2019. Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure. International Journal of Remote Sensing. 40 (15): 5973–5991. doi: http:// doi.org/10.1080/01431161.2019.1584929.
27. Yang C. Wu G. Ding K. Shi T. Li Q. Wang J. 2017. Improving land use/land cover classification by integrating pixel unmixing and decision tree methods. Remote Sensing. 9 (12): 1222. doi: https://doi.org/10.3390/rs9121222.