شناسایی خاستگاههای هواویزهای اتمسفری با استفاده از سنجش از دور و دادهکاوی (مطالعه موردی: استان یزد)
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیمحمد کاظمی 1 , علیرضا نفرزادگان 2 * , فربیرز محمدی 3 , علی رضاییلطیفی 4
1 - استادیار، مرکز مطالعات و تحقیقات هرمز، دانشگاه هرمزگان، بندرعباس، ایران
2 - استادیار، گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران
3 - استادیار، مرکز مطالعات و تحقیقات هرمز، دانشگاه هرمزگان، بندرعباس ؛ استادیار، گروه علوم و مهندسی آب، مجتمع آموزش عالی میناب، دانشگاه هرمزگان، میناب، ایران
4 - استادیار، مرکز مطالعات و تحقیقات هرمز، دانشگاه هرمزگان، بندرعباس ؛ استادیار، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران
کلید واژه: پهنهبندی, عمق اُپتیکی هواویز, متغیرهای مکانی, یادگیری ماشین,
چکیده مقاله :
پیشینه و هدف کشور ایران بدلیل قرار گرفتن در کمربند خشک و نیمه خشک جهان، در معرض پدیده های محلی و منطقه ای گرد و غبار قرار دارد. میانگین روزهای تؤام با گرد و غبار در استان یزد بالغ بر 43 روز در سال است و این مهم به نحوی بر سلامت و کیفیت زندگی مردم اثرات مخربی وارد آورده است. میزان غلظت ذرات معلق و شاخص عمق اُپتیکی هواویز (AOD) در پی وقایع گرد و غبار یکی از شاخص های کیفیت هوا می باشد. بنابراین بررسی و تهیه نقشه های پهنه بندی حساسیت با هدف شناسایی مناطق دارای قابلیت بالای تولید گرد و غبار، در محدوده فعالیت های بشری دارای اهمیت است و جهت کاهش خسارات احتمالی و مدیریت خطر، اقداماتی مانند پهنه بندی عرصه های مختلف تولید گرد و غبار می تواند مؤثر واقع شود. هدف از پژوهش حاضر پهنه بندی پتانسیل عرصه های مختلف مستعد گرد و غبار با استفاده از مدل های داده کاوی و شناسایی مهمترین متغیرها بر این پدیده و بهره مندی از سنجش از دور در این راستا در استان یزد میباشد.مواد و روش ها در این تحقیق ابتدا متغیرهای اقلیمی مختلف (از تصاویر ماهواره ای مختلف) از جمله سرعت باد در ارتفاع ده متری سطح زمین (Vs)، رطوبت خاک (Soil)، بارش تجمعی (Pr)، شاخص خشکسالی پالمر (Pdsi)، شاخص پوشش گیاهی نرمال شده (NDVI)، خشکی خاک یا کمبود آب خاک (Def)، تبخیر و تعرق مرجع (Pet) و واقعی (Aet)، بعد توپوگرافی (TD)، رادیانس طول موج کوتاه رسیده به زمین (Srad)، حداقل دمای هوا (Tmmn)، حداکثر دمای هوا (Tmmx)، فشار بخار (Vap)، کمبود فشار بخار(Vpd) و درصد رس (Clay) با استفاده از کدنویسی در سامانه آنلاین گوگل ارت انجین (GEE) استخراج شدند. سپس نمونه ها از مناطق بحرانی و مستعد گرد و غبار در سیستم اطلاعات جغرافیایی و به کمک تصاویر AOD مودیس استخراج شدند و این ویژگی و همچنین سایر ویژگی ها در متغیرهای اقلیمی وارد سه مدل داده کاوی الگوریتم درختان رگرسیون و طبقه بندی (CART)، رگرسیون انطباقی چندمتغیره اسپیلاین (MARS) و درختان رگرسیون چندگانه جمعشدنی (TreeNet) شدند. در نهایت نتایج پیش بینی این مدل های داده کاوی در سیستم اطلاعات جغرافیایی تبدیل به نقشه و پهنه های مختلف پتانسیل خطر خیزش گرد و غبار شدند.نتایج و بحث در روش CART متغیرهایی همچون شاخص پوشش گیاهی نرمال شده، تبخیر و تعرق واقعی، مدل رقومی ارتفاع، طول موج کوتاه رسیده به سطح زمین، شاخص خشکسالی پالمر، سرعت باد و درصد رس، گره های انتهایی جهت شناسایی مناطق با میانگین بالای عمق اپتیکی هواویزها می باشد. در این روش رطوبت خاک، مدل رقومی ارتفاعی و تبخیر تعرق رفرنس بیشترین اهمیت نسبی را در شناسایی مناطق بحرانی خیزش گرد و غبار نشان دادند. ضریب همبستگی مدل مقدار 0.85 را نشان داد. نتایج داده کاوی به روش MARS نشان داد متغیرهای تبخیر و تعرق واقعی، رطوبت خاک و شاخص خشکسالی پالمر بیشترین اهمیت نسبی را در شناسایی مناطق بحرانی خیزش گرد و غبار داشته اند. ضریب همبستگی مدل مقدار 0.72 را نشان داد. همچنین در روش TreeNet متغیرهای رطوبت خاک، شاخص خشکسالی پالمر و تبخیر و تعرق واقعی بیشترین اهمیت نسبی را نشان دادند. ضریب همبستگی مدل 0.75 بود. همچنین مناطق با حساسیت بسیار زیاد، زیاد، متوسط، کم و بسیار کم به ترتیب حدود 16% ، 19% ، 26% ، 20% و 20%، استان یزد را اشغال کردند.نتیجه گیری با توجه به نتایج یاد شده در مورد شناسایی تأثیرگذارترین متغیرها بر گرد و غبار در مناطق مختلف، نمی توان یک یا چند متغیر را در پدیده خیزش گرد و غبار برای همه مناطق، مشترک در نظر گرفت و این مهم از منطقه به منطقه ای دیگر تغییر می کند. کما اینکه متغیرهای زمین شناسی و کاربری اراضی در پژوهش حاضر جزء متغیرهایی بودند که هیچگونه اثری بر متغیر وابسته یعنی حساسیت به گرد و غبار نداشتند. در پژوهش حاضر، اشتراکات متغیرهای مستقل مهم و چرخه تصمیم گیری شامل تبخیر و تعرق واقعی، رطوبت خاک، شاخص خشکسالی پالمر، سرعت باد، ارتفاع، شاخص پوشش گیاهی و حداقل دمای روزانه بودند. هیچکدام از پژوهش های مرتبط در مورد موضوع پژوهش، در انتخاب بهترین مدل داده کاوی، همپوشانی نداشتند و مدل داده کاوی واحدی برای بررسی حساسیت مناطق مختلف به پدیده گرد و غبار در ایران یافت نشد. شایان ذکر است، در این پژوهش مدل الگوریتم درختان رگرسیون و طبقه بندی انتخاب شد. پژوهش حاضر در نوع مدل های داده کاوی استفاده شده و متغیرهای مستقل با پژوهشهای یاد شده متفاوت بوده و با توجه به عدم همپوشانی نتایج انتخاب مدل برتر، نمی توان نسخه واحدی برای انتخاب بهترین مدل داده کاوی برای ایران در بحث گرد و غبار ارائه نمود. لذا پیشنهاد می شود از بهترین مدل های منتخب در پژوهشهای یاد شده برای داده کاوی پدیده گرد و غبار در پژوهشهای آتی استفاده و مورد قیاس قرار گیرند.http://dorl.net/dor/20.1001.1.26767082.1400.12.1.4.5
Background and ObjectiveThe Middle East is one of the most important regions in the world for dust production. Iran, located in the Middle East, is exposed to numerous local and trans-regional dust systems due to its location in the arid and semi-arid regions of the world. Dust storms, in addition to covering arable land and plants with wind-blown materials, destroy fertile lands and reduce biological production and biodiversity, and severely affect the survival of residents. Dust storms are involved in the transmission of dangerous pathogens to humans, air pollution, and damage to respiratory function. Dust storms in Yazd province are relatively common and the average number of days with dust storms in the province reaches 43 days a year. This phenomenon has caused many problems for the people of the province. The main indicators of air quality are the concentration of suspended particles and the aerosol optical depth (AOD) following the occurrence of dust events. Numerous studies have been conducted in the world to identify the centers of dust collection and their origin. However, to the best of the authors’ knowledge, there is no study on the spatial zoning of dust conditions using three algorithms of CART, MARS and TreeNet algorithms as the predictive models. The purpose of this study is to forecast and zoning the potential of different areas for the production of dust aerosols using remote sensing data and data mining models as well as to specify the most important variables on this phenomenon in Yazd province. Materials and Methods The Yazd province lies in a dry region of Central Iran. The province experienced average annual rainfall of about 57 mm and an average annual temperature of about 20 ºC. The maximum temperature experienced in the warmest month of the province is close to 46 ºC. The maximum wind speed in this province is up to 120 kilometres per hour. The Google Earth Engine (GEE) interface (Javascript editor) was applied to collect remote sensing data in order to form three data sets that contain features related to topography, climate, and land surface conditions. These features were employed as the independent variables of the models, which is built by taking advantage of three data mining algorithms, classification and regression tree (CART), multivariate adaptive regression splines (MARS), and TreeNet, to specify the potential of areas for dust production. The dependent variable (target variable) of the models was the aerosol optical depth (AOD), which was acquired from MOD04 AOD retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite. The outcomes of the three models for classifying areas with different dust potentials were evaluated under performance criteria, such as R-squared, mean absolute deviation (MAD), the mean square error (MSE), the mean relative absolute deviation (MRAD), and the root means square error (RMSE). Results and Discussion The results showed the variables mostly affecting the dependent variable (AOD) in the MARS model were actual evapotranspiration, soil moisture, and the Palmer drought severity index. The values of R2 and RMSE in the MARS model were equal to 0.72 and 0.02, respectively. Similarly, the features with the highest relative importance according to the TreeNet model were soil moisture, Palmer drought severity index, and actual evapotranspiration. The values of R2 and RMSE in the TreeNet model were equal to 0.75 and 0.019, respectively. The results revealed that the CART model with R2 =0.85, MAD = 0.011, MSE =0.002, MRAD =0.262, and RMSE =0.014 had the best performance compared with the other two data mining models. The soil moisture, elevation, reference and actual evapotranspiration, minimum and maximum temperature, Palmer drought severity index, downward shortwave solar radiation, and wind speed were the most important variables in forecasting the potential of areas for dust production, respectively. Also, the areas with very high, high, moderate, low and very low susceptibility were occupied about 16%, 19%, 26%, 20% and 20% of the Yazd province, respectively. Conclusion All three models, which were based on three data mining algorithms, CART, MARS, and TreeNet, had a good agreement in specifying the most important variables affecting the optical depth of the dust aerosols in the study area. However, these models indicated different priority order for the identified variables in terms of relative importance; Besides, there was a difference in their performance criteria. As mentioned above, the CART model was the best-performing model, of the current study, for specifying the potential of areas for the generation of dust aerosols. According to this model, 25.8% of the province was classified as the moderate-risk of aerosol production, 18.6% of the province as the high-risk of aerosol production, and 16.0% of the study region as the very high-risk of dust aerosols. The high-risk areas are mostly spread in the western and southwestern regions of the Yazd province. Palmer United States golfer (born in 1929) More (Definitions, Synonyms, Translation). http://dorl.net/dor/20.1001.1.26767082.1400.12.1.4.5
Ahmadlou M, Delavar M. 2015. Multiple land use change modeling using multivariate adaptive regression spline and geospatial information system. Journal of Geomatics Science and Technology, 5(2): 131-146. (In Persian).
Ali M, Asklany SA, El-wahab M, Hassan M. 2019. Data Mining Algorithms for Weather Forecast Phenomena Comparative Study. International Journal of Computer Science and Network Security, 19(9): 76-81.
Alibakhshi T, Azizi Z, Vafaeinezhad A, Aghamohammadi H. 2020. Survey of Area Changes in Water Basins of Shahid Abbaspour Dam Caused by 2019 Floods Using Google Earth Engine. Iranian Journal of Ecohydrology, 7(2): 345-357. (In Persian).
Bari Abarghuei H, Tabatabaei Aghda S, Tavakoli M, Najjar Hadashi N. 2006. The origin of Yazd storms and the damages caused by it. 1st National Conference on Wind erosion and dust storms. Paper presented at the 21 January, Yazd University, Yazd, Iran. (In Persion).
Boroughani M, Pourhashemi S. 2019. Susceptibility Zoning of Dust Source Areas by Data Mining Methods over Khorasan Razavi Province. Environmental Erosion Research Journal, 9(3): 1-22. (In Persian).
Danesh Shahraki M, Shahriari A, Gangali M, Bameri A. 2017. Seasonal and Spatial Variability of Airborne Dust Loading Rate over the Sistan plain cities and its Relationship with some Climatic Parameters. Journal of Water and Soil Conservation, 23(6): 199-215. (In Persian).
Ebrahimi-Khusfi Z, Ruhollah T-M, Maryam M. 2021. Evaluation of machine learning models for predicting the temporal variations of dust storm index in arid regions of Iran. Atmospheric Pollution Research, 12(1): 134-147. doi:https://doi.org/10.1016/j.apr.2020.08.029.
Friedman JH, Meulman JJ. 2003. Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22(9): 1365-1381. doi:https://doi.org/10.1002/sim.1501.
Fridedman J. 1991. Multivariate adaptive regression splines (with discussion). Ann Stat, 19(1): 79-141.
Gholami H, Aliakbar M, Adrian LC. 2020. Spatial mapping of the provenance of storm dust: Application of data mining and ensemble modelling. Atmospheric Research, 233: 104716. doi:https://doi.org/10.1016/j.atmosres.2019.104716.
Gordon L. 2013. Using classification and regression trees (CART) in SAS® enterprise miner TM for applications in public health. SAS Global Forum 2013, San Francisco, California.
Halabian A, Javari M, Akbari Z, Akbari G. 2017. Evaluating the performance of decision tree model in estimating the suspended sediments of river (A case study on the basin of Meimeh river). Geography And Development Iranian Journal, 15(49): 81-96. (In Persian).
Hojati M. 2017. Artificial neural network based model to estimate dust storms PM10 content using MODIS satellite images. Journal of Environmental Studies, 42(4): 823-838. (In Persian).
Hunter H, Cervone G. 2017. Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining. International Journal of Remote Sensing, 38(6): 1494-1521. doi:https://doi.org/10.1080/01431161.2016.1277279.
Karimi K, Taheri Shahraiyni H, Habibi Nokhandan M, Hafezi Moghadas N. 2011. Identifying sources of origin for producing dust storms in Middle East using remote sensing. Journal of Climate Research, 2((7-8)): 57-72. (In Persian).
Khalighi Sigaroudi S, Shahbandari R, Dadfar R, Kamrani F. 2011. Investigation of the relationship between drought and dust storms (Case study: Yazd province). Paper presented at the 2nd National Conference on Wind Erosion and Dust Storms. Yazd University, Yazd, Iran. (In Persian).
Loh WY. 2011. Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1): 14-23.
Mirakbari M, Ganji A, Fallah S. 2010. Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering, 15(12): 985-1000. doi:https://doi.org/10.1061/(ASCE)HE.1943-5584.0000271.
Mohammad Khan S. 2017. The study of the status and trend of changes in dust storms in Iran during the period from 1985 to 2005. Irrigation and Watershed Management (Iranian Journal of Natural Resources) 2(3): 495-514. (In Persian).
Panahi M, Mirhashemi SH. 2015. Assessment among two data mining algorithms CART and CHAID in forecast air temperature of the synoptic station of Arak. Environmental Sciences, 13(4): 53-58. (In Persian).
Pourhashemi S, Amirahmadi A, Zangane Asadi MA, Salehi M. 2018. Identifying and determining the characteristics of dust centers in Khorasan Razavi province. Arid Regions Geography Studies, 9(34): 1-9. (In Persian).
Pourhashemi S, Boroghani M, Amirahmadi A, Zanganeh Asadi M, Salhi M. 2019. Dust source prioritization with using statistical models (Case study: Khorasan Razavi provience). Journal of Range and Watershed Managment, 72(2): 343-358. (In Persian).
Rashki A, Kaskaoutis D, Rautenbach CJW, Eriksson P, Qiang M, Gupta P. 2012. Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5(3): 51-62. doi:https://doi.org/10.1016/j.aeolia.2011.12.001.
Rezazadeh M, Irannejad P, Shao Y. 2013. Climatology of the Middle East dust events. Aeolian Research, 10: 103-109. doi:https://doi.org/10.1016/j.aeolia.2013.04.001.
Rokach L, Maimon OZ. 2014. Data mining with decision trees: theory and applications, vol 81. World scientific. 244 p.
Sharma H, Kumar S. 2016. A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research (IJSR), 5(4): 2094-2097.
Sobhani B, Safarian Zengir V, Faizollahzadeh S. 2020. Modeling and prediction of dust in western Iran. Physical Geography Research Quarterly, 52(1): 17-35. (In Persian).
Soleimanpour S, Mesbah S, Hedayati B. 2018. Application of CART decision tree data mining to determine the most effective drinking water quality factors (case study: Kazeroon plain, Fars province). Iranian Journal of Health and Environment, 11(1): 1-14. (In Persian).
Tsolmon R, Ochirkhuyag L, Sternberg T. 2008. Monitoring the source of trans-national dust storms in north east Asia. International Journal of Digital Earth, 1(1): 119-129. doi:https://doi.org/10.1080/17538940701782593.
Zha W, Chan W-Y. 2005. Objective Speech Quality Measurement Using Statistical Data Mining. EURASIP Journal on Advances in Signal Processing, 2005(9): 721258. doi:10.1155/ASP.2005.1410.
_||_Ahmadlou M, Delavar M. 2015. Multiple land use change modeling using multivariate adaptive regression spline and geospatial information system. Journal of Geomatics Science and Technology, 5(2): 131-146. (In Persian).
Ali M, Asklany SA, El-wahab M, Hassan M. 2019. Data Mining Algorithms for Weather Forecast Phenomena Comparative Study. International Journal of Computer Science and Network Security, 19(9): 76-81.
Alibakhshi T, Azizi Z, Vafaeinezhad A, Aghamohammadi H. 2020. Survey of Area Changes in Water Basins of Shahid Abbaspour Dam Caused by 2019 Floods Using Google Earth Engine. Iranian Journal of Ecohydrology, 7(2): 345-357. (In Persian).
Bari Abarghuei H, Tabatabaei Aghda S, Tavakoli M, Najjar Hadashi N. 2006. The origin of Yazd storms and the damages caused by it. 1st National Conference on Wind erosion and dust storms. Paper presented at the 21 January, Yazd University, Yazd, Iran. (In Persion).
Boroughani M, Pourhashemi S. 2019. Susceptibility Zoning of Dust Source Areas by Data Mining Methods over Khorasan Razavi Province. Environmental Erosion Research Journal, 9(3): 1-22. (In Persian).
Danesh Shahraki M, Shahriari A, Gangali M, Bameri A. 2017. Seasonal and Spatial Variability of Airborne Dust Loading Rate over the Sistan plain cities and its Relationship with some Climatic Parameters. Journal of Water and Soil Conservation, 23(6): 199-215. (In Persian).
Ebrahimi-Khusfi Z, Ruhollah T-M, Maryam M. 2021. Evaluation of machine learning models for predicting the temporal variations of dust storm index in arid regions of Iran. Atmospheric Pollution Research, 12(1): 134-147. doi:https://doi.org/10.1016/j.apr.2020.08.029.
Friedman JH, Meulman JJ. 2003. Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22(9): 1365-1381. doi:https://doi.org/10.1002/sim.1501.
Fridedman J. 1991. Multivariate adaptive regression splines (with discussion). Ann Stat, 19(1): 79-141.
Gholami H, Aliakbar M, Adrian LC. 2020. Spatial mapping of the provenance of storm dust: Application of data mining and ensemble modelling. Atmospheric Research, 233: 104716. doi:https://doi.org/10.1016/j.atmosres.2019.104716.
Gordon L. 2013. Using classification and regression trees (CART) in SAS® enterprise miner TM for applications in public health. SAS Global Forum 2013, San Francisco, California.
Halabian A, Javari M, Akbari Z, Akbari G. 2017. Evaluating the performance of decision tree model in estimating the suspended sediments of river (A case study on the basin of Meimeh river). Geography And Development Iranian Journal, 15(49): 81-96. (In Persian).
Hojati M. 2017. Artificial neural network based model to estimate dust storms PM10 content using MODIS satellite images. Journal of Environmental Studies, 42(4): 823-838. (In Persian).
Hunter H, Cervone G. 2017. Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining. International Journal of Remote Sensing, 38(6): 1494-1521. doi:https://doi.org/10.1080/01431161.2016.1277279.
Karimi K, Taheri Shahraiyni H, Habibi Nokhandan M, Hafezi Moghadas N. 2011. Identifying sources of origin for producing dust storms in Middle East using remote sensing. Journal of Climate Research, 2((7-8)): 57-72. (In Persian).
Khalighi Sigaroudi S, Shahbandari R, Dadfar R, Kamrani F. 2011. Investigation of the relationship between drought and dust storms (Case study: Yazd province). Paper presented at the 2nd National Conference on Wind Erosion and Dust Storms. Yazd University, Yazd, Iran. (In Persian).
Loh WY. 2011. Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1): 14-23.
Mirakbari M, Ganji A, Fallah S. 2010. Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering, 15(12): 985-1000. doi:https://doi.org/10.1061/(ASCE)HE.1943-5584.0000271.
Mohammad Khan S. 2017. The study of the status and trend of changes in dust storms in Iran during the period from 1985 to 2005. Irrigation and Watershed Management (Iranian Journal of Natural Resources) 2(3): 495-514. (In Persian).
Panahi M, Mirhashemi SH. 2015. Assessment among two data mining algorithms CART and CHAID in forecast air temperature of the synoptic station of Arak. Environmental Sciences, 13(4): 53-58. (In Persian).
Pourhashemi S, Amirahmadi A, Zangane Asadi MA, Salehi M. 2018. Identifying and determining the characteristics of dust centers in Khorasan Razavi province. Arid Regions Geography Studies, 9(34): 1-9. (In Persian).
Pourhashemi S, Boroghani M, Amirahmadi A, Zanganeh Asadi M, Salhi M. 2019. Dust source prioritization with using statistical models (Case study: Khorasan Razavi provience). Journal of Range and Watershed Managment, 72(2): 343-358. (In Persian).
Rashki A, Kaskaoutis D, Rautenbach CJW, Eriksson P, Qiang M, Gupta P. 2012. Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research, 5(3): 51-62. doi:https://doi.org/10.1016/j.aeolia.2011.12.001.
Rezazadeh M, Irannejad P, Shao Y. 2013. Climatology of the Middle East dust events. Aeolian Research, 10: 103-109. doi:https://doi.org/10.1016/j.aeolia.2013.04.001.
Rokach L, Maimon OZ. 2014. Data mining with decision trees: theory and applications, vol 81. World scientific. 244 p.
Sharma H, Kumar S. 2016. A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research (IJSR), 5(4): 2094-2097.
Sobhani B, Safarian Zengir V, Faizollahzadeh S. 2020. Modeling and prediction of dust in western Iran. Physical Geography Research Quarterly, 52(1): 17-35. (In Persian).
Soleimanpour S, Mesbah S, Hedayati B. 2018. Application of CART decision tree data mining to determine the most effective drinking water quality factors (case study: Kazeroon plain, Fars province). Iranian Journal of Health and Environment, 11(1): 1-14. (In Persian).
Tsolmon R, Ochirkhuyag L, Sternberg T. 2008. Monitoring the source of trans-national dust storms in north east Asia. International Journal of Digital Earth, 1(1): 119-129. doi:https://doi.org/10.1080/17538940701782593.
Zha W, Chan W-Y. 2005. Objective Speech Quality Measurement Using Statistical Data Mining. EURASIP Journal on Advances in Signal Processing, 2005(9): 721258. doi:10.1155/ASP.2005.1410.