Recent Advances in Ti3C2Tx MXene for Solid-State Batteries: A Mini Review
Subject Areas : نانومواد و پلیمرهای هوشمندMehdi Arjmand 1 * , golsa elyasi 2
1 - Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 - chemical engineering
Keywords: Ti3C2Tx MXene, Solid-State Battries (SSBs), Solid Electrolytes, 2-Dimensional Materials, Electrochemical Performance.,
Abstract :
MXenes, a class of two-dimensional transition metal carbides and nitrides, have emerged as promising materials for solid-state batteries (SSBs) due to their exceptional electrical conductivity, tunable surface chemistry, and mechanical flexibility. These unique properties help address several limitations of SSBs, such as poor interfacial contact, low ionic conductivity, and structural instability. This mini-review presents a concise overview of recent developments in the application of Ti3C2Tx MXene within different components of SSBs, including their roles as electrode materials, fillers in solid electrolytes, and interfacial modifiers. Key advantages such as enhanced charge transfer, facilitated ion transport, and improved mechanical compatibility are discussed. Despite MXenes’ potential, challenges such as oxidation sensitivity and difficulties in large-scale production remain significant barriers. Recent experimental studies demonstrating the benefits of Ti3C2Tx MXene integration in battery systems are highlighted, providing a better understanding of their functionality. The review concludes with a perspective on future directions for incorporating MXenes into next-generation solid-state energy storage technologies, aiming for safer and more efficient devices.
1. Janek J, Zeier WG. Challenges in speeding up solid-state battery development. Nature Energy. 2023;8(3):230-40.
2. Machín A, Morant C, Márquez F. Advancements and challenges in solid-state battery technology: An in-depth review of solid electrolytes and anode innovations. Batteries. 2024;10(1):29.
3. Wang C, Sun X. The promise of solid-state batteries for safe and reliable energy storage. Engineering. 2023;21:32-5.
4. Wu Y, Wang S, Li H, Chen L, Wu F. Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries. InfoMat. 2021;3(8):827-53.
5. Bridgelall R. Solid-State Battery Developments: A Cross-Sectional Patent Analysis. Sustainability. 2024;16(24):10994.
6. Rahardian S, Budiman BA, Sambegoro PL, Nurprasetio IP, editors. Review of solid-state battery technology progress. 2019 6th International Conference on Electric Vehicular Technology (ICEVT); 2019: IEEE.
7. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS nano. 2012;6(2):1322-31.
8. Zeraati AS, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti 3 C 2 T x MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale. 2021;13(6):3572-80.
9. Zhang Q, Fan R, Cheng W, Ji P, Sheng J, Liao Q, et al. Synthesis of large‐area MXenes with high yields through power‐focused delamination utilizing vortex kinetic energy. Advanced Science. 2022;9(28):2202748.
10. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature. 2014;516(7529):78-81.
11. Barjola A, Herráiz R, Amaro A, Torres J, Suárez A, Giménez E. Ti3C2Tx Electromagnetic Shielding Performance: Investigating Environmental Influences and Structural Changes. Advanced Electronic Materials. 2024;10(9):2400024.
12. Rong C, Su T, Li Z, Chu T, Zhu M, Yan Y, et al. Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nature Communications. 2024;15(1):1566.
13. Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2T x MXene fibers using a deformable MXene gel. ACS nano. 2021;15(2):3320-9.
14. VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021;372(6547):eabf1581.
15. Gogotsi Y. MXenes: from discovery to applications of two-dimensional metal carbides and nitrides: CRC Press; 2023.
16. Xiong D, Li X, Bai Z, Lu S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419.
17. Liu Y, Yu J, Guo D, Li Z, Su Y. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds. 2020;815:152403.
18. Liao L, Jiang D, Zheng K, Zhang M, Liu J. Industry‐scale and environmentally stable Ti3C2Tx MXene based film for flexible energy storage devices. Advanced Functional Materials. 2021;31(35):2103960.
19. Nath NK, Mohanta RR, Parida R, Parida B, Nayak NC. Improving the energy storage efficiency and power density of polymer blend in combination with Ti3C2Tx for energy storage devices. Materials Today Chemistry. 2024;41:102338.
20. Zhao S, Nivetha R, Qiu Y, Guo X. Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications. Chinese Chemical Letters. 2020;31(4):947-52.
21. Verger L, Natu V, Carey M, Barsoum MW. MXenes: an introduction of their synthesis, select properties, and applications. Trends in chemistry. 2019;1(7):656-69.
22. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. MXenes: Jenny Stanford Publishing; 2023. p. 677-722.
23. Thakur A, Chandran BS N, Davidson K, Bedford A, Fang H, Im Y, et al. Step‐by‐step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods. 2023;7(8):2300030.
24. Bedford A, Wyatt BC, Highland WJ, Nemani SK, Pulley KK, Jordan J, Anasori B. Guidelines on Fluorine‐based Synthesis of MXenes. Transition Metal Carbides and Nitrides (MXenes) Handbook: Synthesis, Processing, Properties and Applications. 2024:34-57.
25. Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nature Synthesis. 2022;1(8):601-14.
26. Lipatov A, Bagheri S, Sinitskii A. Metallic Conductivity of Ti3C2T x MXene Confirmed by Temperature-Dependent Electrical Measurements. ACS Materials Letters. 2023;6(1):298-307.
27. Shahzad F, Iqbal A, Kim H, Koo CM. 2D transition metal carbides (MXenes): applications as an electrically conducting material. Advanced Materials. 2020;32(51):2002159.
28. Zha X-H, Huang Q, He J, He H, Zhai J, Francisco JS, Du S. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific reports. 2016;6(1):27971.
29. Okubo M, Sugahara A, Kajiyama S, Yamada A. MXene as a charge storage host. Accounts of chemical research. 2018;51(3):591-9.
30. Wang Y, Xiang P, Ren A, Lai H, Zhang Z, Xuan Z, et al. MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Applied Materials & Interfaces. 2020;12(48):53973-83.
31. Zhang X, Zhang Z, Zhou Z. MXene-based materials for electrochemical energy storage. Journal of energy chemistry. 2018;27(1):73-85.
32. Li J, Yuan X, Lin C, Yang Y, Xu L, Du X, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials. 2017;7(15):1602725.
33. Zhou H, Wang F, Wang Y, Li C, Shi C, Liu Y, Ling Z. Study on contact angles and surface energy of MXene films. RSC advances. 2021;11(10):5512-20.
34. Hui X, Ge X, Zhao R, Li Z, Yin L. Interface chemistry on MXene‐based materials for enhanced energy storage and conversion performance. Advanced Functional Materials. 2020;30(50):2005190.
35. Wu C, Fang W, Cheng Q, Wan J, Wen R, Wang Y, et al. MXene‐regulated perovskite vertical growth for high‐performance solar cells. Angewandte Chemie. 2022;134(43):e202210970.
36. Ding R, Sun Y, Lee J, Nam J-D, Suhr J. Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Composites Part B: Engineering. 2021;207:108580.
37. Fei L, Lei L, Xu H, Guo X, Chen B, Han X, et al. Ion transport behaviors in MXenes for electrochemical energy storage and conversion. Carbon Energy. 2025:e678.
38. Liu Z, Tian Y, Yang J, Xu S, Tian Q, Yan P, et al. Ultrafast Ion Transport in 2D Confined MXene for Improved Electrochemical Performance: Boron-Atom-Substituted− OH Termination. ACS nano. 2024;18(47):32950-8.
39. Liu L, Raymundo‐Piñero E, Sunny S, Taberna PL, Simon P. Role of surface terminations for charge storage of Ti3C2Tx MXene electrodes in aqueous acidic electrolyte. Angewandte Chemie. 2024;136(14):e202319238.
40. Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry. 2022;6(6):389-404.
41. Worku AK, Alemu MA, Ayele DW, Getie MZ, Teshager MA. Recent advances in MXene-based materials for high-performance metal-air batteries. Green Chemistry Letters and Reviews. 2024;17(1):2325983.
42. Huang Y, Lu Q, Wu D, Jiang Y, Liu Z, Chen B, et al. Flexible MXene films for batteries and beyond. Carbon Energy. 2022;4(4):598-620.
43. Liu A, Liang X, Ren X, Guan W, Ma T. Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochemical Energy Reviews. 2022:1-33.
44. Huang Y, Yang H, Zhang Y, Zhang Y, Wu Y, Tian M, et al. A safe and fast-charging lithium-ion battery anode using MXene supported Li 3 VO 4. Journal of Materials Chemistry A. 2019;7(18):11250-6.
45. Wen J, Huang L, Huang Y, Luo W, Huo H, Wang Z, et al. A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. Energy Storage Materials. 2022;45:934-40.
46. Yoon J, Chae OB, Wu M, Jung H-T. Dual-functional surface of MXene anodes boosts long-term cyclability of lithium-metal batteries. Journal of Materials Chemistry A. 2025.
47. Xu H, Liu S, Li Z, Ding F, Wang W, Song K, et al. Ti3C2Tx MXene enhanced high-performance LiFePO4 cathode for all-solid-state lithium battery. Journal of Materials Science & Technology. 2025;223:104-13.
48. Liu Y, Xu H, Chen Z, Li B, Liu Q, Savilov SV, Chen M. PVDF-based composite solid polymer electrolyte incorporated with cubic-ZrO2-x for long-cycle lithium metal batteries. Journal of Alloys and Compounds. 2025;1022:179925.
49. Liu Q, Dan Y, Kong M, Niu Y, Li G. Sandwich‐Structured Quasi‐Solid Polymer Electrolyte Enables High‐Capacity, Long‐Cycling, and Dendrite‐Free Lithium Metal Battery at Room Temperature. Small. 2023;19(27):2300118.
50. Zhang D, Meng X, Hou W, Hu W, Mo J, Yang T, et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res Energy. 2023;2(2):e9120050.
51. Xu H, Liu S, Li Z, Ding F, Liu J, Wang W, et al. Synergistic effect of Ti3C2Tx MXene/PAN nanofiber and LLZTO particles on high-performance PEO-based solid electrolyte for lithium metal battery. Journal of Colloid and Interface Science. 2024;668:634-45.
52. Huang T, Xiong W, Ye X, Huang Z, Feng Y, Liang J, et al. Constructing robust polymer/two-dimensional Ti3C2TX solid-state electrolyte interphase via in-situ polymerization for high-capacity long-life and dendrite-free lithium metal anodes. Journal of Colloid and Interface Science. 2022;628:583-94.
53. Zhang D, Wang S, Li B, Gong Y, Yang S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite‐free metallic lithium anodes. Advanced Materials. 2019;31(33):1901820.
54. Narayanasamy M, Zaman S, Koo CM. 2D MXenes for all-solid-state batteries: A comprehensive review. Materials Today Energy. 2023;37:101405.
55. Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Convergence. 2021;8(1):9.
56. Wu T, Kent PR, Gogotsi Y, Jiang D-e. How water attacks MXene. Chemistry of Materials. 2022;34(11):4975-82.
57. Zaed MA, Tan KH, Abdullah N, Saidur R, Pandey AK, Saleque AM. Cost analysis of MXene for low-cost production, and pinpointing of its economic footprint. Open Ceramics. 2024;17:100526.
58. Tan KH, Zaed MA, Saidur R, Abdullah N, Ishak NAIM, Cherusseri J, editors. Strategic insights for bulk production of MXene: a review. E3S web of conferences; 2024: EDP Sciences.
59. Bandpey M, Barz DP. Effects of interlayer space engineering and surface modification on the charge storage mechanisms of MXene nanomaterials: A review on recent developments. Nanoscale. 2024.
60. Wang Y, Yuan P, Xu Z, Liu X-X, Feng S, Cao M, et al. Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters. 2024;35(6):108776.