

Recent Advances in MXene-Based Materials for Solid-State Batteries: A Mini Review

Golsa Sadat Elyasi¹, Mehdi Ardjmand^{2*},

¹ Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

^{1*} Department of Chemical Engineering, South Tehran Branch and Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, Tehran, Iran.

*Corresponding author, Email: m_arjmand@azad.ac.ir

https://doi.org/10.82428/ANSP.2024.1213614

ABSTRACT

MXenes, a class of two-dimensional transition metal carbides and nitrides, have emerged as promising materials for solid-state batteries (SSBs) due to their exceptional electrical conductivity, tunable surface chemistry, and mechanical flexibility. These unique properties help address several limitations of SSBs, such as poor interfacial contact, low ionic conductivity, and structural instability. This mini-review presents a concise overview of recent developments in the application of MXenes within different components of SSBs, including their roles as electrode materials, fillers in solid electrolytes, and interfacial modifiers. Key advantages such as enhanced charge transfer, facilitated ion transport, and improved mechanical compatibility are discussed. Despite their potential, challenges such as oxidation sensitivity and difficulties in large-scale production remain significant barriers. Recent experimental studies demonstrating the benefits of MXene integration in battery systems are highlighted, providing a better understanding of their functionality. The review concludes with a perspective on future directions for incorporating MXenes into next-generation solid-state energy storage technologies, aiming for safer and more efficient devices.

Keywords: MXene, Solid-State Battries (SSBs), Solid Electrolytes, 2-Dimensional Materials, Electrochemical Performance.

1. INTRODUCTION

A solid-state battery (SSB) is a kind of rechargeable battery that uses solid materials as both the electrode and, in certain cases, the electrodes are used along with solid electrolytes instead of the usual liquid or gel electrolytes found in traditional lithium-ion batteries (LiB) (1). These solid electrolytes (SE) can be ceramic, polymer, or glassy in nature, and they enable the transport of lithium ions between the anode and cathode (2). SSBs are considered next-generation energy storage because of their higher safety, greater energy density, and improved thermal and chemical stability compared to liquid-based systems (3, 4). As global energy demands increase and the need for sustainable and efficient storage systems becomes more urgent, SSBs are being widely investigated for use in transportation systems, and large-scale energy storage(5). However, the commercialization of SSBs encounters major challenges, such as low ionic of conductivity SEs, poor interface compatibility between electrodes and electrolytes, and mechanical degradation during cycling (6). To overcome these challenges, it is necessary to develop advanced materials with specific properties designed for each part of the battery.

MXenes ($M_{n+1}X_nT_x$), a novel class of twodimensional transition metal carbides and nitrides. In the MXene formula, M represents an early transition metal, X is carbon or nitrogen, Tx represents surface terminations, and n is an integer indicating the number of 'X' layers (7). MXenes have shown exceptional promise in addressing these challenges. With their high electrical conductivity (8, 9), hydrophilic surface chemistry (10), large specific surface area (11), and mechanical flexibility (12, 13), MXenes have been explored for various roles in SSBs- from conductive electrodes to fillers in composite SEs and interfacial modifiers. This mini-review provides an overview of the recent advances in integrating MXenes into SSBs systems. The discussion covers their functions in different battery components, associated benefits and limitations, and perspectives for future research toward high performance all SSBs.

2. Structure and Properties of MXenes Relevant to SSBs

MXenes are a group of two-dimensional (2D) materials made from transition metal carbides, nitrides, or carbonitrides. They are usually described by the general formula Mn+1XnTx, where M stands for an early transition metal (such as Ti, V, Nb, or Mo), X refers to carbon and/or nitrogen, and Tx represents surface functional groups like –OH, –O, and –F(14, 15) and (Figure 1.). A well-known example is $Ti_3C_2T_x$, which has been widely researched for use in energy storage systems (16-20).

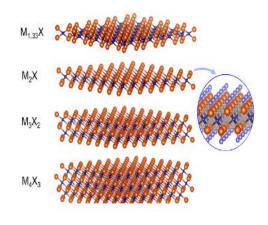
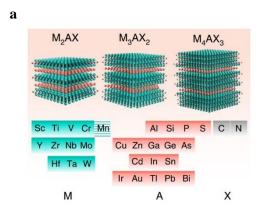



Figure 1. The two-dimensional layered structure of MXenes consists of M-X layers with (Tx: –O, –OH, –F, and/or –Cl), shown in blue. These terminations, simplified as being single-bonded to the M atoms, are located in the spaces between the M atoms, Copyright 2019 Published by Elsevier (21).

Vol. 1, No. 4

MXenes are primarily synthesized by selective etching of the A layer from their parent MAX phases (e.g., Ti₃AlC₂) using fluoride-containing acidic solutions. This etching process removes the "A" element (typically Al), resulting in stacked 2D flakes with tunable surface terminations and interlayer spacing (22-24)(Figure 2.a and b).

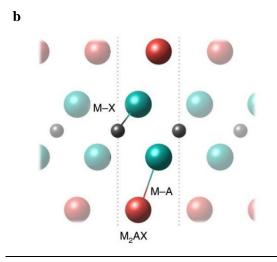


Figure 2. **a)** MAX phases are layered materials made of a transition metal (M), an A-group element (A), and carbon and/or nitrogen (X), following the formula $M_{n+1}AX_n$. **b)** Breaking the M-A bonds through selective etching of the "A" element yields Mxenes, Copyright 2022 Published by Springer Nature (25).

The unique properties of MXenes make them promising for integration into SSBs. MXenes exhibit metallic or near-metallic conductivity, enabling efficient charge transport within the electrode or across interfaces (26-30). Their 2D layered structure provides a high specific surface area, which is advantageous for increasing interfacial contact and active material loading (31-36). The presence of -OH, =O, or -F groups allows for tuning surface chemistry and enhancing ion MXenes (37-40).transport demonstrate flexibility, durability, and chemical stability, making them ideal for mitigating structural integrity during cycling (41-44).

3. MXene Application in Solid-State Batteries

The growing interest in MXenes for energy storage has led to increasing efforts to explore their potential in solid-state battery (SSB) configurations.

This section reviews the application of MXenes across different components of SSBs, including electrodes, solid electrolytes, and interfaces, which highlights their functional roles and the mechanisms by which they enhance battery performance.

3.1 MXenes as Anode/Cathode Materials

MXenes have attracted significant interest in advancing solid-state battery technology due to their metallic conductivity, two-dimensional layered structure, and surface functional groups that facilitate alkali ion transport. In particular, Ti₃C₂T_x and related MXenes have shown great promise as anode materials in solid-state lithium metal batteries. For instance, Li-Ti₃C₂T_x composite anodes demonstrate excellent interfacial compatibility with garnettype solid electrolytes, achieving a remarkably low interfacial resistance of $\sim 5 \Omega \cdot \text{cm}^2$. Moreover, the in-situ formation of LiF at the Li-Ti₃C₂T_x/garnet interface effectively suppresses dendritic lithium growth, which significantly improves safety and cycling

Vol. 1, No. 4

stability (45) and (Figure 3). Building on this, recent work has shown that functionalizing the surface of Ti₃C₂T_x MXene with fluorine-terminated groups leads to the formation of a stable, LiF-rich solid electrolyte interphase (SEI) layer in solid-state lithium metal batteries. This engineered SEI not only reduces interfacial resistance but also stabilizes the electrode/electrolyte interface by preventing dendrite formation and mechanical degradation during cycling. Such dual functional roles of MXene as a highly conductive host and interfacial stabilizer underscore its potential to enhance the long-term performance and safety of solid-state lithium metal batteries (46).

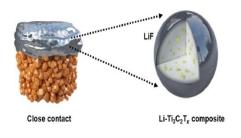


Figure 3. Li–MXene composite anode in solidstate battery: enhances interfacial contact with the solid electrolyte, lowers interfacial resistance, and prevents lithium dendrite growth by forming a protective in-situ LiF layer, Copyright 20200 Published by Elsevier.

MXenes are proving vital for enhancing cathode performance and overall battery stability in solid-state battery systems. conductivity and unique Their high structural properties enable them to effectively reduce charge-transfer resistance and ensure uniform charge distribution during electrochemical cycling, directly addressing challenges in these next-generation battery architectures. A key application is in LiFePO₄ (LFP) cathodes within all-solid-state configurations. For demonstrates instance, research incorporating Ti₃C₂T_x MXene significantly enhances the performance of LiFePO₄ cathodes in all-solid-state lithium batteries. This improvement is attributed to MXene's high electronic conductivity and superior interfacial stability, which collectively facilitate more efficient lithium ion transport and overall power delivery within the solid electrolyte environment (47).

3.2 MXenes as Solid Electrolytes Fillers or Components

While MXenes aren't primary lithium-ion conductors, their surface functional groups and compatibility with polymers make them promising as fillers in composite solid electrolytes. significantly They enhance mechanical strength, thermal stability, and ionic conductivity. A recent study highlights this by incorporating a 3D interconnected Ti₃C₂T_x network into a PEO-based solid polymer electrolyte. This design improved both ionic weakening conductivity (by Li⁺-PEO association via Lewis acid-base interactions) and mechanical strength. The Li||CSE||Li symmetric cell exhibited outstanding cycling stability, operating for more than 3000 hours at 0.1 mA cm⁻² and over 2500 hours at 0.05 mA cm⁻². Additionally, the LiFePO₄||CSE||Li battery achieved a capacity of 145.3 mAh/g at 0.3 C after 300 cycles, highlighting the contribution of MXene to high-performance solid-state electrolytes (48). MXene-SiO₂ nanosheets effectively serve as functional fillers in polyacrylonitrile (PAN)-based quasi-solid polymer electrolytes (QSPEs). They enhance Li⁺ transfer, boosting ionic conductivity to ≈ 1.7 mS cm⁻¹ at 30 °C and a t_{Li}+ to 0.51. Li symmetric batteries showed remarkable stability, cycling over 1550 hours at 0.2 mA cm⁻². Crucially, LiFePO₄||CSE||Li quasi-solid-state lithium metal batteries (OSSLMBs) with this OSPE retained 81.5% capacity after 300 cycles at 1.0 C, highlighting MXene's role in robust, highperforming solid-state batteries (49). Oxygencontaining terminal groups (-OH, -O) help break down lithium salts and create continuous pathways for Li⁺ transport within the polymer matrix.Moreover, MXenes enhance

Vol. 1, No. 4

interface between the solid electrolyte and the electrodes, leading to better contact and performance, minimizing interfacial resistance (50),a key bottleneck in SSBs. Recent studies also explore heterostructures where MXenes are combined with ceramic fillers (e.g., LLZO), creating hybrid electrolytes with both high ionic and electronic control. A 3D interconnected MXene (Ti₃C₂T_x) network synergistically reinforced with LLZTO in a PEO-based solid polymer electrolyte. This design enhances both ionic conductivity and mechanical strength for all-solid-state lithium metal batteries. The MXene's surface groups weaken Li+-PEO association, while its network improves mechanical robustness. The Li symmetric battery demonstrated remarkable stability, cycling for more than 3000 hours at 0.1 mA cm⁻² and over 2500 hours at 0.05 mA cm⁻². In addition, the LiFePO4||CSE||Li battery achieved a capacity of 145.3 mAh/g at 0.3 C after 300 cycles, highlighting the promise of MXeneceramic hybrid electrolytes (51).

3.3 Interface Engineering with MXenes

One of the major challenges in solid-state batteries is poor interfacial contact and high interfacial resistance, particularly between rigid solid electrolytes and active materials. MXenes offer a unique solution due to their soft, conformal nature and excellent conductivity. When used as interlayers or coatings, MXenes can buffer mechanical mismatch, enhance wettability, and reduce interfacial impedance. Their surface chemistry can also be tuned to create favorable interactions with both the solid electrolyte and electrode, enabling more stable solid—solid interfaces.

For example, $T_{i3}C_2T_x$ interlayers between Li metal and sulfide-based electrolytes have been shown to suppress dendrite formation and promote uniform Li plating/stripping. This engineering approach significantly improves cycle life and safety. One study demonstrated that forming a robust solid-state electrolyte interphase using two-dimensional $T_{i3}C_2T_x$ MXene on lithium metal anodes effectively

prevents dendrite growth (52). Another significant work illustrated that parallelly aligned Ti₃C₂T_x MXene layers help promote even nucleation and lateral growth of lithium, leading to dendrite-free metallic lithium anodes (Figure 4.). The fluorine terminations in MXene further enhance this effect by promoting the formation of a uniform and stable solid electrolyte interface (SEI) that is rich in lithium fluoride (LiF) anode/electrolyte at the boundary. This LiF-rich SEI effectively controls the movement of lithium ions, resulting in anodes with a long cycle life up to 900 hours and strong stripping-plating performance reaching 35 mAh cm⁻². MXene-coated anodes like these can support lithium metal batteries that maintain high cycling stability for as many as 1000 cycles (53).

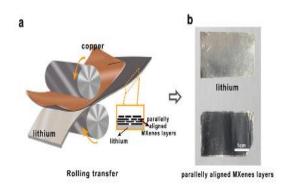


Figure 4. A schematic illustrates a rolling process used to transfer PA-MXene layers from a copper backing (PA-MXene-Cu) onto a lithium surface (PA-MXene-Li), Copyright 2019 Published by Wiley (53).

4. Challenges and Future Outlook

MXenes offer a combination of electrical conductivity, surface functionality, and mechanical compliance that make them highly attractive for use in solid-state batteries. Their ability to form strong interfacial contact with both electrodes and electrolytes, while maintaining structural integrity, makes them

Vol. 1, No. 4

valuable as active materials, conductive additives, or interface modifiers. Furthermore, the ease of surface functionalization allows for tunable interactions with various solid-state components, which can lead to improved electrochemical performance (54).

Despite these advantages, several challenges limit the widespread use of MXenes in SSBs. First, the instability of MXenes in ambient conditions, particularly their tendency to oxidize when exposed to air or moisture, can degrade their electrical properties and longterm stability (55, 56). Second, the synthesis and processing of high-quality, defect-free MXene films at scale remains complex and costly, which hinders their integration into commercial battery systems Moreover, the role of MXenes in ionic conductivity is still under investigation. While some surface terminations may facilitate Li+ transport, MXenes are not inherently good ionic conductors, and their presence in excess could potentially block ion transport pathways in composite materials (37, 59). Additionally, interfacial reactions between MXenes and certain solid electrolytes (e.g., sulfide-based) could lead to the formation of resistive interphases, which negatively affect battery performance (60).

Therefore, while MXenes have demonstrated great potential in addressing critical challenges in SSBs, further work is needed to optimize their chemical stability, interface compatibility, and integration strategies for practical applications.

The unique structural and physicochemical properties of MXenes position them as highly promising materials for advancing solid-state battery (SSB) technologies. Their metallic conductivity, high surface area, and tunable surface chemistry allow them to function effectively as active materials, interfacial

layers, or composite fillers. These capabilities directly address several limitations of current SSBs, such as low ionic/electronic conductivity, high interfacial resistance, and mechanical instability.

However, to translate the laboratory-scale benefits of MXenes into practical battery systems, several key challenges must be addressed. These include improving their longterm stability against oxidation, developing scalable and cost-effective synthesis methods, and ensuring compatibility with a broader range of solid electrolytes and electrode materials. Moreover, deeper understanding of their electrochemical behavior, particularly at buried interfaces and under operating conditions, is essential. Future research should also focus on exploring new MXene compositions beyond Ti₃C₂T_x, with optimized terminations and layered chemistries tailored for ion transport and interface engineering. Furthermore, in situ characterization techniques and multi-scale modeling will play a critical role in elucidating ion transport mechanisms and guiding material design.

Overall, the integration of MXenes into solidstate battery architectures holds great promise, but its success will depend on interdisciplinary efforts that bridge materials science, electrochemistry, and device engineering.

5. Conclusion

MXenes have emerged as a highly versatile class of two-dimensional materials with significant potential for improving performance and reliability of solid-state batteries. Their unique combination of metallic conductivity, surface functionality, adaptability structural enables them contribute effectively across multiple battery components, from electrodes solid electrolytes and interfaces.

Vol. 1, No. 4

While current research demonstrates promising results in enhancing ionic conductivity, interfacial stability, and mechanical integration, several challenges, such as oxidation sensitivity and scalability, must be overcome for real-world applications. Continued advancements in material engineering, processing methods, and fundamental understanding will be key to unlocking the full potential of MXenes in next-generation solid-state energy storage systems.

REFERENCES

- 1. Janek J, Zeier WG. Challenges in speeding up solid-state battery development. Nature Energy. 2023;8(3):230-40.
- 2. Machín A, Morant C, Márquez F. Advancements and challenges in solid-state battery technology: An in-depth review of solid electrolytes and anode innovations. Batteries. 2024;10(1):29.
- 3. Wang C, Sun X. The promise of solid-state batteries for safe and reliable energy storage. Engineering. 2023;21:32-5.
- 4. Wu Y, Wang S, Li H, Chen L, Wu F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat. 2021;3(8):827-53.
- 5. Bridgelall R. Solid-State Battery Developments: A Cross-Sectional Patent Analysis. Sustainability. 2024;16(24):10994.
- S, 6. Rahardian Budiman BA, Sambegoro PL, Nurprasetio IP, editors. Review of solid-state battery technology 2019 International progress. 6th Conference Vehicular on Electric Technology (ICEVT); 2019: IEEE.

- 7. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS nano. 2012;6(2):1322-31.
- 8. Zeraati AS, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti 3 C 2 T x MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale. 2021;13(6):3572-80.
- 9. Zhang Q, Fan R, Cheng W, Ji P, Sheng J, Liao Q, et al. Synthesis of largearea MXenes with high yields through power-focused delamination utilizing vortex kinetic energy. Advanced Science. 2022;9(28):2202748.
- 10. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay'with high volumetric capacitance. Nature. 2014;516(7529):78-81.
- 11. Barjola A, Herráiz R, Amaro A, Torres J, Suárez A, Giménez E. Ti3C2Tx Electromagnetic Shielding Performance: Investigating Environmental Influences and Structural Changes. Advanced Electronic Materials. 2024;10(9):2400024.
- 12. Rong C, Su T, Li Z, Chu T, Zhu M, Yan Y, et al. Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nature Communications. 2024;15(1):1566.
- 13. Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2T x MXene fibers using a deformable MXene gel. ACS nano. 2021;15(2):3320-9.
- 14. VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021;372(6547):eabf1581.

Vol. 1, No. 4

- 15. Gogotsi Y. MXenes: from discovery to applications of two-dimensional metal carbides and nitrides: CRC Press; 2023.
- 16. Xiong D, Li X, Bai Z, Lu S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419.
- 17. Liu Y, Yu J, Guo D, Li Z, Su Y. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds. 2020;815:152403.
- 18. Liao L, Jiang D, Zheng K, Zhang M, Liu J. Industry-scale and environmentally stable Ti3C2Tx MXene based film for flexible energy storage devices. Advanced Functional Materials. 2021;31(35):2103960.
- 19. Nath NK, Mohanta RR, Parida R, Parida B, Nayak NC. Improving the energy storage efficiency and power density of polymer blend in combination with Ti3C2Tx for energy storage devices. Materials Today Chemistry. 2024;41:102338.
- 20. Zhao S, Nivetha R, Qiu Y, Guo X. Two-dimensional hybrid nanomaterials derived from MXenes (Ti3C2Tx) as advanced energy storage and conversion applications. Chinese Chemical Letters. 2020;31(4):947-52.
- 21. Verger L, Natu V, Carey M, Barsoum MW. MXenes: an introduction of their synthesis, select properties, and applications. Trends in chemistry. 2019;1(7):656-69.
- 22. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. MXenes: Jenny Stanford Publishing; 2023. p. 677-722.

- 23. Thakur A, Chandran BS N, Davidson K, Bedford A, Fang H, Im Y, et al. Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods. 2023;7(8):2300030.
- 24. Bedford A, Wyatt BC, Highland WJ, Nemani SK, Pulley KK, Jordan J, Anasori B. Guidelines on Fluorine-based Synthesis of MXenes. Transition Metal Carbides and Nitrides (MXenes) Handbook: Synthesis, Processing, Properties and Applications. 2024:34-57.
- 25. Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nature Synthesis. 2022;1(8):601-14.
- 26. Lipatov A, Bagheri S, Sinitskii A. Metallic Conductivity of Ti3C2T x MXene Confirmed by Temperature-Dependent Electrical Measurements. ACS Materials Letters. 2023;6(1):298-307.
- 27. Shahzad F, Iqbal A, Kim H, Koo CM. 2D transition metal carbides (MXenes): applications as an electrically conducting material. Advanced Materials. 2020;32(51):2002159.
- 28. Zha X-H, Huang Q, He J, He H, Zhai J, Francisco JS, Du S. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific reports. 2016;6(1):27971.
- 29. Okubo M, Sugahara A, Kajiyama S, Yamada A. MXene as a charge storage host. Accounts of chemical research. 2018;51(3):591-9.
- 30. Wang Y, Xiang P, Ren A, Lai H, Zhang Z, Xuan Z, et al. MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells. ACS Applied Materials & Interfaces. 2020;12(48):53973-83.
- 31. Zhang X, Zhang Z, Zhou Z. MXenebased materials for electrochemical energy

Vol. 1, No. 4

- storage. Journal of energy chemistry. 2018;27(1):73-85.
- 32. Li J, Yuan X, Lin C, Yang Y, Xu L, Du X, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials. 2017;7(15):1602725.
- 33. Zhou H, Wang F, Wang Y, Li C, Shi C, Liu Y, Ling Z. Study on contact angles and surface energy of MXene films. RSC advances. 2021;11(10):5512-20.
- 34. Hui X, Ge X, Zhao R, Li Z, Yin L. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Advanced Functional Materials. 2020;30(50):2005190.
- 35. Wu C, Fang W, Cheng Q, Wan J, Wen R, Wang Y, et al. MXene-regulated perovskite vertical growth for high-performance solar cells. Angewandte Chemie. 2022;134(43):e202210970.
- 36. Ding R, Sun Y, Lee J, Nam J-D, Suhr J. Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Composites Part B: Engineering. 2021;207:108580.
- 37. Fei L, Lei L, Xu H, Guo X, Chen B, Han X, et al. Ion transport behaviors in MXenes for electrochemical energy storage and conversion. Carbon Energy. 2025:e678.
- 38. Liu Z, Tian Y, Yang J, Xu S, Tian Q, Yan P, et al. Ultrafast Ion Transport in 2D Confined MXene for Improved Electrochemical Performance: Boron-Atom-Substituted— OH Termination. ACS nano. 2024;18(47):32950-8.
- 39. Liu L, Raymundo-Piñero E, Sunny S, Taberna PL, Simon P. Role of surface terminations for charge storage of Ti3C2Tx

- MXene electrodes in aqueous acidic electrolyte. Angewandte Chemie. 2024;136(14):e202319238.
- 40. Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry. 2022;6(6):389-404.
- 41. Worku AK, Alemu MA, Ayele DW, Getie MZ, Teshager MA. Recent advances in MXene-based materials for high-performance metal-air batteries. Green Chemistry Letters and Reviews. 2024;17(1):2325983.
- 42. Huang Y, Lu Q, Wu D, Jiang Y, Liu Z, Chen B, et al. Flexible MXene films for batteries and beyond. Carbon Energy. 2022;4(4):598-620.
- 43. Liu A, Liang X, Ren X, Guan W, Ma T. Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochemical Energy Reviews. 2022:1-33.
- 44. Huang Y, Yang H, Zhang Y, Zhang Y, Wu Y, Tian M, et al. A safe and fast-charging lithium-ion battery anode using MXene supported Li 3 VO 4. Journal of Materials Chemistry A. 2019;7(18):11250-6.
- 45. Wen J, Huang L, Huang Y, Luo W, Huo H, Wang Z, et al. A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. Energy Storage Materials. 2022;45:934-40.
- 46. Yoon J, Chae OB, Wu M, Jung H-T. Dual-functional surface of MXene anodes boosts long-term cyclability of lithiummetal batteries. Journal of Materials Chemistry A. 2025.
- 47. Xu H, Liu S, Li Z, Ding F, Wang W, Song K, et al. Ti3C2Tx MXene enhanced

Vol. 1, No. 4

- high-performance LiFePO4 cathode for allsolid-state lithium battery. Journal of Materials Science & Technology. 2025;223:104-13.
- Liu Y, Xu H, Chen Z, Li B, Liu Q, 48. Savilov SV, Chen M. **PVDF-based** composite solid polymer electrolyte incorporated with cubic-ZrO2-x for longcycle lithium metal batteries. Journal of Alloys Compounds. and 2025;1022:179925.
- 49. Liu Q, Dan Y, Kong M, Niu Y, Li G. Sandwich-Structured Quasi-Solid Polymer Electrolyte Enables High-Capacity, Long-Cycling, and Dendrite-Free Lithium Metal Battery at Room Temperature. Small. 2023;19(27):2300118.
- 50. Zhang D, Meng X, Hou W, Hu W, Mo J, Yang T, et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res Energy. 2023;2(2):e9120050.
- 51. Xu H, Liu S, Li Z, Ding F, Liu J, Wang W, et al. Synergistic effect of Ti3C2Tx MXene/PAN nanofiber and LLZTO particles on high-performance PEO-based solid electrolyte for lithium metal battery. Journal of Colloid and Interface Science. 2024;668:634-45.
- 52. Huang T, Xiong W, Ye X, Huang Z, Feng Y, Liang J, et al. Constructing robust polymer/two-dimensional Ti3C2TX solid-state electrolyte interphase via in-situ polymerization for high-capacity long-life and dendrite-free lithium metal anodes. Journal of Colloid and Interface Science. 2022;628:583-94.
- 53. Zhang D, Wang S, Li B, Gong Y, Yang S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Advanced Materials. 2019;31(33):1901820.

- 54. Narayanasamy M, Zaman S, Koo CM. 2D MXenes for all-solid-state batteries: A comprehensive review. Materials Today Energy. 2023;37:101405.
- 55. Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Convergence. 2021;8(1):9.
- 56. Wu T, Kent PR, Gogotsi Y, Jiang De. How water attacks MXene. Chemistry of Materials. 2022;34(11):4975-82.
- 57. Zaed MA, Tan KH, Abdullah N, Saidur R, Pandey AK, Saleque AM. Cost analysis of MXene for low-cost production, and pinpointing of its economic footprint. Open Ceramics. 2024;17:100526.
- 58. Tan KH, Zaed MA, Saidur R, Abdullah N, Ishak NAIM, Cherusseri J, editors. Strategic insights for bulk production of MXene: a review. E3S web of conferences; 2024: EDP Sciences.
- 59. Bandpey M, Barz DP. Effects of interlayer space engineering and surface modification on the charge storage mechanisms of MXene nanomaterials: A review on recent developments. Nanoscale. 2024.
- 60. Wang Y, Yuan P, Xu Z, Liu X-X, Feng S, Cao M, et al. Ti3C2Tx MXene insitu transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters. 2024;35(6):108776.