Ultra-High Surface Area Activated Carbon from Bacterial Cellulose via Potassium Carbonate Catalyzed Pyrolysis: Mechanisms and Applications
Subject Areas : Applied smart materialsHamideh Najarzadeh 1 , abo-saeed rashidi 2 * , ramin khajavi 3 , Mohammad Esmail Yazdanshenas 4 , Amin Meftahi 5
1 - Department of Textile Engineering, SR.C., Islamic Azad University, Tehran, Iran.
2 - Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - 2Department of Chemical & Polymer Engineering, ST.C, Islamic Azad University, Tehran, Iran
4 - Department of Textile Engineering, SR.C., Islamic Azad University, Tehran, Iran.
5 - Department of Textile Engineering, SR.C., Islamic Azad University, Tehran, Iran.
Keywords: Activated carbon (AC), bacterial cellulose (BC), potassium carbonate (PC), activated carbon from unmodified bacterial cellulose (ACUM), activated carbon from modified bacterial cellulose (ACM) ,
Abstract :
This study aimed to enhance the production of high-quality activated carbon (AC) from bacterial cellulose (BC) through a strategic potassium carbonate (PC) pretreatment. We meticulously evaluated the properties of activated carbon derived from unmodified bacterial cellulose (ACUM) and compared them with those obtained from PC-modified bacterial cellulose (ACM), unequivocally demonstrating the profound success of this chemical pretreatment methodology.
The results were striking: compared to ACUM, the PC-modified BC (ACM) exhibited a remarkable increase in carbon content, reaching 85.43% from an initial 65.16%. Furthermore, its pore volume surged to an impressive 0.844 cm³/g, significantly higher than ACUM's 0.339 cm³/g. Most notably, the specific surface area of ACM dramatically doubled, achieving 1600.14 m²/g compared to ACUM's 800.94 m²/g.
In-depth mechanistic studies provided crucial insights, revealing that PC actively promotes the formation of a more homogeneous pore structure within the carbon material. Concurrently, it effectively reduces the pyrolysis temperatures required for efficient carbonization of the bacterial cellulose. This groundbreaking work significantly advances the design and development of sustainable, high-performance AC, opening new avenues for its application in critical areas such as environmental remediation and a diverse array of biomedical applications.
1. Dias JM, Alvim-Ferraz MC, Almeida MF, Rivera-Utrilla J, & Sánchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage 85(4), 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031.
2. Durán I, Álvarez-Gutiérrez N, Rubiera F, & Pevida CJCEJ (2018) Biogas purification by means otsf adsorption on pine sawdust-based activated carbon: Impact of water vapor. Chem. Eng J 353, 197-207. https://doi.org/10.1016/j.cej.2018.07.100.
3. Chen L, Pinto A, & Alshawabkeh A N (2019) Activated carbon as a cathode for water disinfection through the electro-fenton process. Focus Catal Focus on 9(7), 601-606. https://doi.org/10.3390/catal9070601.
4. Rahimian R, & Zarinabadi S (2020) A review of studies on the removal of methylene blue dye from industrial wastewater using activated carbon adsorbents made from almond bark. Prog Chem Biochem Res 3(3), 251-268. https://doi.org/10.33945/SAMI/PCBR.2020.3.8.
5. Nejadshafiee V, & Islami MR (2019) Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater Sci Eng, C 101, 42-52. https://doi.org/10.1016/j.msec.2019.03.081.
6. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, & Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2), 393-415. https://doi.org/10.1007/s10311-019-00955-0.
7. Winter C, Caetano JN, Araújo ABC, Chaves AR, Ostroski IC, Vaz BG, & Alonso CG (2016) Activated carbons for chalcone production: Claisen-Schmidt condensation reaction. Chem Eng J 303, 604-610. https://doi.org/10.1016/j.cej.2016.06.058.
8. Purnawati AS (2021) Treatment of Salt for Food-Grade Using Activated Carbon. Adv Mater Res (Vol. 1162, pp. 9-14). Trans Tech Publications Ltd, 9-14. https://doi.org/10.4028/www.scientific.net/AMR.1162.9.
9. Mansour F, Al-Hindi M, Yahfoufi R, Ayoub GM, & Ahmad MN (2018) The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Rev Environ Sci Bio/Technol 17(1), 109-145. https://doi.org/10.1007/s11157-017-9456-8.
10. Ani JU, Akpomie KG, Okoro UC, Aneke LE, Onukwuli OD, & Ujam OT (2020) Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl Water Sci 10(2), 1-11. https://doi.org/10.1007/s13201-020-1149-8.
11. Pallarés J, González-Cencerrado A, & Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115, 64-73. https://doi.org/10.1016/j.biombioe.2018.04.015.
12. Hu J, Fu W, Ni F, Zhang X, Yang C, & Sang J (2020) An integrated process for the advanced treatment of hypersaline petrochemical wastewater: a pilot study. Water Res 182, 116019, 1-9. https://doi.org/10.1016/j.watres.2020.116019.
13. Corda NC, & Kini MS (2018) A review on adsorption of cationic dyes using activated carbon. MATEC Web Conf (Vol. 144, p. 02022). EDP Sciences, 7-16. https://doi.org/10.1051/matecconf/201814402022.
14. González-García P (2018) Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable Sustainable Energy Rev 82, 1393-1414. https://doi.org/10.1016/j.rser.2017.04.117.
15. Saleem J, Shahid UB, Hijab M, Mackey H, & McKay G (2019) Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers Biorefin 9(4), 775-802. https://doi.org/10.1007/s13399-019-00473-7.
16. Yang CY, Kao CL, & Hung PY (2022) Preparation of activated carbon from waste cation exchange resin and its application in wastewater treatment. Carbon Lett 32(2), 461-474. https://doi.org/10.1007/s42823-021-00275-w.
17. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, & Johan MR (2020) Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS omega 5(33), 20684-20697. https://doi.org/10.1021/acsomega.0c01905.
18. Alam MM, Hossain MA, Hossain MD, Johir MAH, Hossen J, Rahman MS, & Ahmed MB (2020) The potentiality of rice husk-derived activated carbon: From synthesis to application. Processes 8(2), 203, 23-31. https://doi.org/10.3390/pr8020203.
19. Zhan Y, An X, Wang S, Sun M, & Zhou H (2020) Basil polysaccharides: A review on extraction, bi ACUMtivities and pharmacological applications. Bioorg Med Chem 28(1), 115179. 12-22. https://doi.org/10.1016/j.bmc.2019.115179.
20. Özsin G, Kılıç M, Apaydın-Varol E, & Pütün AE (2019) Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Appl Water Sci 9(3), 1-14. https://doi.org/10.1007/s13201-019-0942-8.
21. Gan YX (2021) Activated Carbon from Biomass Sustainable Sources. C, 7(2), 39. https://doi.org/10.3390/c7020039.
22. Tomishima H, Luo K, & Mitchell AE (2021) The Almond (Prunus dulcis): Chemical Properties, Utilization, and Valorization of Coproducts. Annu Rev Food Sci Technol 13, 2-15. https://doi.org/10.1146/annurev-food-052720-111942.
23. Zhu M, Zhang L, Chen Y, You N, & Shen H (2022) Nanocomposites of Zirconia@ Activated Carbon Derived from Hazelnut Shell for Adsorption of Tetracyclines from Water. Environ Sci Technol, 223-306. https://doi.org/10.1039/D2EW00115B.
24. Liang Q, Liu Y, Chen M, Ma L, Yang B, Li L, & Liu Q (2020) Optimized preparation of activated carbon from coconut shell and municipal sludge. Mater Chem Phys 241, 122327. 1-28. https://doi.org/10.1016/j.matchemphys.2019.122327.
25. Agboola O, Okoli B, Sanni SE, Alaba PA, Popoola P, Sadiku ER, & Makhatha ME (2019) Synthesis of activated carbon from olive seeds: investigating the yield, energy efficiency, and dye removal capacity. SN Appl Sci 1(1), 1-10. https://doi.org/10.1007/s42452-018-0089-5.
26. Purnomo CW, Castello D, & Fiori L (2018) Granular activated carbon from grape seeds hydrothermal char. Appl Sci 8(3), 331-362. https://doi.org/10.3390/app8030331.
27. da Costa WK OC, Gavazza S, Duarte MMMB, Freitas SKB, de Paula NTG, & Paim APS (2021) Preparation of Activated Carbon from Sugarcane Bagasse and Removal of Color and Organic Matter from Real Textile Wastewater. Water Air Soil Pollut 232(9), 1-13. https://doi.org/10.1007/s11270-021-05306-w.
28. Menya E, Olupot PW, Storz H, Lubwama M, & Kiros Y (2018) Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des 129, 271-296. https://doi.org/10.1016/j.cherd.2017.11.008.
29. Abbasi S, Foroutan R, Esmaeili H, & Esmaeilzadeh F (2019) Preparation of activated carbon from worn tires for removal of Cu (II), Ni (II) and Co (II) ions from synthetic wastewater. Desalin Water Treat 141, 269-278. https://doi.org/10.5004/dwt.2019.23569.
30. Togibasa O, Ansanay YO, Dahlan K, & Erari M (2021) Identification of surface functional group on activated carbon from waste sago. J Phys Theor Appl 5(1), 1-8. https://doi.org/10.20961/jphystheor-appl.v5i1.49885.
31. Alhogbi BG, Altaye, S, Bahaidarah E, & Zawrah MF (2021) Removal of anionic and cationic dyes from wastewater using activated carbon from palm tree fiber waste. Processes 9(3), 416-452. https://doi.org/10.3390/pr9030416.
32. Elkady M, Shokry H, & Hamad H (2020) New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Mater 13(11), 2498-2503. https://doi.org/10.3390/ma13112498.
33. Dobashi A, Maruyama J, Shen Y, Nandi M, & Uyama H (2018) Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Carbohydr Polym 200, 381-390. https://doi.org/10.1016/j.carbpol.2018.08.016.
34. Zhang W, Cheng H, Niu Q, Fu M, Huang H, & Ye D (2019) Microbial targeted degradation pretreatment: a novel appr ACUMh to preparation of activated carbon with specific hierarchical porous structures, high surface areas, and satisfactory toluene adsorption performance. Environ Sci Technol 53(13), 7632-7640. https://doi.org/10.1021/acs.est.9b01159.
35. Pang M, Huang Y, Meng F, Zhuang Y, Liu H, Du M, & Cai Y (2020) Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 122, 109365. 2-22. https://doi.org/10.1016/j.eurpolymj.2019.109365.
36. Geravand SA, Khajavi R, Rahimi MK, Ghiyasvand MS, & Meftahi A (2022) Improving some structural and biological characteristics of bacterial cellulose by cross‐linking. J Appl Polym Sci 139(18), 52056. 23-36. https://doi.org/10.1002/app.52056.
37. Ciecholewska-Juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, & Fijałkowski K (2021) Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydr Polym 253, 117247.1-12. https://doi.org/10.1016/j.carbpol.2020.117247.
38. Khajavi, R., Meftahi, A., Alibakhshi, S., & Samih, L. (2014). Investigation of Microbial cellulose/Cotton/Silver nanobiocomposite as a modern wound dressing. Advanced Materials Research, 829, 616-621. https://doi.org/10.4028/www.scientific.net/AMR.829.616
39. Mirmohammadsadegh N, Shakoori M, Moghaddam HN, Farhadi R, Shahverdi AR, & Amin M (2021) Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil. DARU J Pharm Sci 1-10. https://doi.org/10.1007/s40199-021-00405-9.
40. Eshgh, N. A., Meftahi, A., Khajavi, R., Aljabali, A. A., & Barhoum, A. (2022). Nanocelluloses for tissue engineering and biomedical scaffolds. In Handbook of nanocelluloses: classification, properties, fabrication, and emerging applications (pp. 1-36). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-89621-8_43
41. Lee KY, Qian H, Tay FH, Blaker JJ, Kazarian SG, & Bismarck A (2013) Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. J Mater Sci 48(1), 367-376. https://doi.org/10.1007/s10853-012-6754-y.
42. Khamkeaw A, Phanthang L, Jongsomjit B, & Phisalaphong M (2019) Activated carbon derived from bacterial cellulose and its use as catalyst support for ethanol conversion to ethylene. Catal Commun 129, 105750.1-7. https://doi.org/10.1016/j.catcom.2019.105750.
43. Khamkeaw A, Jongsomjit B, Robison J, & Phisalaphong M (2019) Activated carbon from bacterial cellulose as an effective adsorbent for removing dye from aqueous solution. Sep Sci Technol 54(14), 2180-2193. https://doi.org/10.1080/01496395.2018.1541906.
44. Khamkeaw A, Jongsomjit B, Yip AC, & Phisalaphong M (2022) Application of activated carbon derived from bacterial cellulose for mesoporous HZSM-5 catalyst synthesis and performances of catalyst in bioethanol dehydration. Biomass Bioenergy 160, 106440. 2-12. https://doi.org/10.1016/j.biombioe.2022.106440.
45. Koochaki CB, Khajavi R, Rashidi A, Mansouri N, & Yazdanshenas ME (2020) The effect of pre-swelling on the characteristics of obtained activated carbon from cigarette butts fibers. Biomass Convers Biorefin 10(2), 227-236. https://doi.org/10.1007/s13399-019-00429-x.
46. Meftahi A, Shahriari HR, Khajavi R, Rahimi MK, & Sharifian A (2020) Investigation on nano microbial cellulose/honey composite for medical application. Mater Res Express 7(8), 085003. 2-14. https://doi.org/10.1088/2053-1591/aba8de.
47. Chen H, Tang Z, Liu B, Chen W, Hu J, Chen Y, & Yang H (2021) The new insight about mechanism of the influence of K2Co3 on cellulose pyrolysis. Fuel 295, 120617. 1-9. https://doi.org/10.1016/j.fuel.2021.120617.
48. Zhu L, Zhao N, Tong L, & Lv Y (2018) Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv 8(37), 21012-21019. https://doi.org/10.1039/C8RA03335H.
49. Luo, W., Guo, N., Wang, L., Jia, D., Xu, M., Zhang, S., ... & Cao, Y. (2023). Homogeneous activation induced by bacterial cellulose nanofibers to construct interconnected microporous carbons for enhanced capacitive storage. Journal of Colloid and Interface Science, 636, 33-41. https://doi.org/10.1016/j.jcis.2022.12.170.
50. Nishimura M, Iwasaki S, & Horio M (2009) The role of potassium carbonate on cellulose pyrolysis. J Taiwan Inst. Chem Eng 40(6), 630-637. https://doi.org/10.1016/j.jtice.2009.05.005.
51. Shu, Y., Bai, Q., Fu, G., Xiong, Q., Li, C., Ding, H., ... & Uyama, H. (2020). Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydrate Polymers, 227, 115346. 1-12. https://doi.org/10.1016/j.carbpol.2019.115346.
52. Gao Y, Yue Q, Gao B, & Li A (2020) Insight into activated carbon from different kinds of chemical activating agents: A review. Sci Total Environ 746, 141094. 1-19. https://doi.org/10.1016/j.scitotenv.2020.141094.
53. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, & Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2), 393-415. https://doi.org/10.1007/s10311-019-00955-0.
54. Yang S, Fecher S, Wang Q, Kühne M, & Smet JH (2022) Device level reversible potassium intercalation into bilayer graphene. 2D Mater 9(2), 025020.1-10. https://doi.org/10.1088/2053-1583/ac58a1.
55. Boongate C, & Phisalaphong M (2015) Activated carbons from bacterial cellulose by chemical activation with potassium hydroxide. Inter Conf Sci Tech (pp. 144-147). IEEE. 1-4. https://doi.org/10.1109/TICST.2015.7369351.
56. Zhao D, Guo Y, Wang G, & Mao X (2019) Characterizing nanoscale pores and its structure in coal: Experimental investigation. Energy Explor Exploit 37(4), 1320-1347. https://doi.org/10.1177/0144598719831397.
57. Chingombe P, Saha B, & Wakeman RJ (2005) Surface modification and haracterization of a coal-based activated carbon. Carbon 43(15), 3132-3143. https://doi.org/10.1016/j.carbon.2005.06.021.
58. Nguyen DT, Tran HN, Juang RS, Dat ND, Tomul F, Ivanets A, & Chao HP (2020) Adsorption process and mechanism of acetaminophen onto commercial activated carbon. J Environ Chem Eng Journal of 8(6), 104408. 23-36. https://doi.org/10.1016/j.jece.2020.104408.
59. Yagmur E, Gokce Y, Tekin S, Semerci NI, & Aktas Z (2020) Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2. Fuel 267, 117232. 1-8. https://doi.org/10.1016/j.fuel.2020.117232.
60. Saadatkhah N, Carillo Garcia A, Ackermann S, Leclerc P, Latifi M, Samih S, & Chaouki J (2020) Experimental methods in chemical engineering: thermogravimetric analysis—TGA. Can J Chem Eng 98(1), 34-43. https://doi.org/10.1002/cjce.23673.
61. Martínez-Sanz M, Lopez-Rubio A, & Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85(1), 228-236. https://doi.org/10.1016/j.carbpol.2011.02.021.
62. Zhao, Q., Zhang, K., Zhu, S., Xu, H., Cao, D., Zhao, L., ... & Yin, W. (2019). Review on the electrical resistance/conductivity of carbon fiber reinforced polymer. Applied Sciences, 9(11), 2390. 1-25. https://doi.org/10.3390/app9112390.
63. Huang, Y. (2017). Electrical and thermal properties of activated carbon fibers. In Activated carbon fiber and textiles. Woodhead Publishing. 181-192. https://doi.org/10.1016/B978-0-08-100660-3.00007-9.
64. Adinaveen, T., Vijaya, J. J., & Kennedy, L. J. (2016). Comparative study of electrical conductivity on activated carbons prepared from various cellulose materials. Arabian Journal for Science and Engineering, 41, 55-65. https://doi.org/10.1007/s13369-014-1516-6.