محصولات زیستفعال سیانوباکتریها و ریز جلبکها بهعنوان مکملهای غذایی و دارویی باارزش
الموضوعات :
سید امیر علی انوار
1
,
بهاره نوروزی
2
,
مریم طلا
3
1 - استادیار گروه بهداشت مواد غذایی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه زیستشناسی، دانشکده علوم، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار گروه شیلات، واحد قشم، دانشگاه آزاد اسلامی، قشم، ایران
تاريخ الإرسال : 23 الأحد , رجب, 1442
تاريخ التأكيد : 20 الأحد , رمضان, 1442
تاريخ الإصدار : 08 الأحد , شعبان, 1442
الکلمات المفتاحية:
محصولات فعال زیستی,
ترکیبات توکسیک,
ریز جلبکها,
سیانوباکتریها,
ملخص المقالة :
سیانوباکتریها و ریز جلبکها، پتانسیل زیادی در تولید انواع زیادی از ترکیبات فعال زیستی توکسیک و غیر توکسیک دارند و میتوانند منجر به توسعه صنایع غذایی و دارویی در آیندهای نزدیک شوند. تکثیر تجاری جلبکها در ابعاد وسیع، ناشی از توانائی آنها در تولید طیف وسیعی از متابولیتهای ثانویه باارزش مانند پلی و منو اسیدهای چرب غیراشباع، پلی ساکاریدها، گلیسرول، گلیکوپروتئینها، ترکیبات آنتیاکسیدانی و آنتیبیوتیکها است. امروزه با گسترش بالقوه مقاومت باکتریایی و کاهش کارایی آنتیبیوتیکهای موجود، محققین در بین محصولات تولیدشده توسط ریز جلبکها، به دنبال یافتن آنتیبیوتیکهای جدیدی هستند. بااینحال، بسیاری از سویههای سیانوباکتریایی دارای ترکیبات توکسیک هستند که منجر به مرگ بسیاری از انسانها و حیوانات میشود. در این مقاله مروری کوشش شده است تا با جمعآوری و گردآوردی آخرین تحقیقات انجامشده، به معرفی محصولات فعال زیستی با ارزش به همراه انواع سیانوتوکسینهای موجود در مواد غذایی و روشهای تیمار با آنها پرداخته شود. امید است نتایج حاصل از این تحقیق بتواند زمینهساز معرفی متابولیتهای با ارزش تولیدشده توسط سیانوباکتریها و ریز جلبکها در صنایع غذایی و داروسازی تلقی گردد.TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian// TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian// TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian// TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian// TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian// TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//TRANSLATE with xEnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian// TRANSLATE with COPY THE URL BELOW BackEMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//
المصادر:
· Abbaspour, S., Nowruzi, B. and Hamdi, S.M.M. (2020). Optimizing the Cultivation Conditions of Fischerella sp. SH. A Cyanobacterium for Maximizing Polysaccharide Production with Antibacterial Activity. Biological Journal of Microorganism, 9 (34): 24-52.
· Eghtedari, M., Porzani, S.J. and Nowruzi, B. (2021). Anticancer potential of natural peptides from terrestrial and marine environments: A review.Phytochemistry Letters. 42: 78-103.
· Carvalho, L.R., Costa-Neves, A., Conserva, G.A., Brunetti, R.L., Hentschke, G.S., Malone, C.F., et al. (2013). Biologically active compounds from cyanobacteria extracts: in vivo and in vitro aspects. Revista Brasileira de Farmacognosia, 23(3): 471-480.
· de Amarante, M.C.A., Braga, A.R.C., Sala, L. and Kalil, S.J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137: 109602.
· Encarnacao, T., Pais, A.A., Campos, M.G. and Burrows, H.D. (2015). Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Science progress, 98(2):145-168.
· Eriksen, N.T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1): 1-14.
· Gantar, M. and Svirčev, Z. (2008). Microalgae and cyanobacteria: food for thought 1. Journal of phycology, 44(2): 260-268.
· Guedes, A.C., Amaro, H.M. and Malcata, F.X. (2011). Microalgae as sources of high added‐value compounds—a brief review of recent work. Biotechnology Progress, 27(3): 597-613.
· Andrade, M.A., Barbosa, C.H., Souza, V.G., Coelhoso, I.M., Reboleira, J., Bernardino, S. et al. (2021). Novel active food packaging films based on whey protein incorporated with seaweed extract: development, characterization, and application in fresh poultry meat. Coatings, 11(2): 229.
· He, X., Liu, Y.L., Conklin, A., Westrick, J., Weavers, L.K., Dionysiou, D.D., et al. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful algae, 54:174-193.
· Jaiswal, P., Singh, P.K. and Prasanna, R. (2008). Cyanobacterial bioactive molecules-an overview of their toxic properties. Canadian Journal of Microbiology, 54(9): 701-717.
· Jalili, F., Trigui, H., Guerra Maldonado, J.F., Dorner, S., Zamyadi, A., Shapiro, B.J., et al. (2021). Can cyanobacterial diversity in the source predict the diversity in sludge and the risk of toxin release in a drinking water treatment plant? Toxins, 13(1): 25.
· Kultschar, B. and Llewellyn, C. (2018). Secondary metabolites in cyanobacteria. Secondary Metabolites—Sources and Applications, 64.
· Lee, J., Lee, S. and Jiang, X. (2017). Cyanobacterial toxins in freshwater and food: important sources of exposure to humans. Annual Review of Food Science and Technology, 8: 281-304.
· Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y.Z., et al. (2014). Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of Natural Products, 77(8): 1784-1790.
· Liu, D., Liberton, M., Hendry, J.I., Aminian-Dehkordi, J., Maranas, C.D. and Pakrasi, H.B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67: 1-6.
· Martínez-Francés, E. and Escudero-Oñate, C. (2018). Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnology, 6: 104-128.
· Metcalf, J.S. and Codd, G.A. (2020). Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: impacts and implications. Toxins, 12(10): 629.
· Mysliwa-Kurdziel, B. and Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13): 1173-1193.
· Nicoletti, M., 2016. Microalgae nutraceuticals. Foods, 5(3): 54.
· Nowruzi, B., Haghighat, S., Fahimi, H. and Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1): 5-12.
· Nowruzi, B. and Porzani, S.J. (2021). Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. Journal of Applied Toxicology, 41(4): 510-548.
· Nowruzi, B., Sarvari, G. and Blanco, S. (2020a). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49: 101959.
· Nowruzi, B., Sarvari, G. and Blanco, S. (2020b). Applications of cyanobacteria in biomedicine. InHandb. Algal Science, Microbiology, Technology, and Medicine: 441-454.
· Panjiar, N., Mishra, S., Yadav, A.N. and Verma, P. (2017). Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. Microbial Functional Foods and Nutraceuticals, 21-37.
· Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., et al. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds. Applied Biochemistry and Microbiology, 46(2): 119-134.
· Rajabpour, N., Nowruzi, B. and Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2): 1-14.
· Rezanka, T. and Dembitsky, V.M. (2006). Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiologica, 51(3): 159-182.
· Safavi, M., Nowruzi, B., Estalaki, S. and Shokri, M. (2019). Biological Activity of Methanol Extract from Nostoc sp. N42 and Fischerella sp. S29 Isolated from aquatic and terrestrial ecosystems. International Journal on Algae, 21(4): 373-391.
· Sathasivam, R., Radhakrishnan, R., Hashem, A. and Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4): 709-722.
· Singh, S., Kate, B.N. and Banerjee, U.C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3): 73-95.
· Zahra, Z., Choo, D.H., Lee, H. and Parveen, A. (2020). Cyanobacteria: review of current potentials and applications. Environments, 7(2): 13.
· Zanchett, G. and Oliveira-Filho, E.C. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10): 1896-1917.
_||_
· Abbaspour, S., Nowruzi, B. and Hamdi, S.M.M. (2020). Optimizing the Cultivation Conditions of Fischerella sp. SH. A Cyanobacterium for Maximizing Polysaccharide Production with Antibacterial Activity. Biological Journal of Microorganism, 9 (34): 24-52.
· Eghtedari, M., Porzani, S.J. and Nowruzi, B. (2021). Anticancer potential of natural peptides from terrestrial and marine environments: A review.Phytochemistry Letters. 42: 78-103.
· Carvalho, L.R., Costa-Neves, A., Conserva, G.A., Brunetti, R.L., Hentschke, G.S., Malone, C.F., et al. (2013). Biologically active compounds from cyanobacteria extracts: in vivo and in vitro aspects. Revista Brasileira de Farmacognosia, 23(3): 471-480.
· de Amarante, M.C.A., Braga, A.R.C., Sala, L. and Kalil, S.J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137: 109602.
· Encarnacao, T., Pais, A.A., Campos, M.G. and Burrows, H.D. (2015). Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Science progress, 98(2):145-168.
· Eriksen, N.T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1): 1-14.
· Gantar, M. and Svirčev, Z. (2008). Microalgae and cyanobacteria: food for thought 1. Journal of phycology, 44(2): 260-268.
· Guedes, A.C., Amaro, H.M. and Malcata, F.X. (2011). Microalgae as sources of high added‐value compounds—a brief review of recent work. Biotechnology Progress, 27(3): 597-613.
· Andrade, M.A., Barbosa, C.H., Souza, V.G., Coelhoso, I.M., Reboleira, J., Bernardino, S. et al. (2021). Novel active food packaging films based on whey protein incorporated with seaweed extract: development, characterization, and application in fresh poultry meat. Coatings, 11(2): 229.
· He, X., Liu, Y.L., Conklin, A., Westrick, J., Weavers, L.K., Dionysiou, D.D., et al. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful algae, 54:174-193.
· Jaiswal, P., Singh, P.K. and Prasanna, R. (2008). Cyanobacterial bioactive molecules-an overview of their toxic properties. Canadian Journal of Microbiology, 54(9): 701-717.
· Jalili, F., Trigui, H., Guerra Maldonado, J.F., Dorner, S., Zamyadi, A., Shapiro, B.J., et al. (2021). Can cyanobacterial diversity in the source predict the diversity in sludge and the risk of toxin release in a drinking water treatment plant? Toxins, 13(1): 25.
· Kultschar, B. and Llewellyn, C. (2018). Secondary metabolites in cyanobacteria. Secondary Metabolites—Sources and Applications, 64.
· Lee, J., Lee, S. and Jiang, X. (2017). Cyanobacterial toxins in freshwater and food: important sources of exposure to humans. Annual Review of Food Science and Technology, 8: 281-304.
· Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y.Z., et al. (2014). Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of Natural Products, 77(8): 1784-1790.
· Liu, D., Liberton, M., Hendry, J.I., Aminian-Dehkordi, J., Maranas, C.D. and Pakrasi, H.B. (2021). Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 67: 1-6.
· Martínez-Francés, E. and Escudero-Oñate, C. (2018). Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnology, 6: 104-128.
· Metcalf, J.S. and Codd, G.A. (2020). Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: impacts and implications. Toxins, 12(10): 629.
· Mysliwa-Kurdziel, B. and Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini reviews in medicinal chemistry, 17(13): 1173-1193.
· Nicoletti, M., 2016. Microalgae nutraceuticals. Foods, 5(3): 54.
· Nowruzi, B., Haghighat, S., Fahimi, H. and Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1): 5-12.
· Nowruzi, B. and Porzani, S.J. (2021). Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. Journal of Applied Toxicology, 41(4): 510-548.
· Nowruzi, B., Sarvari, G. and Blanco, S. (2020a). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49: 101959.
· Nowruzi, B., Sarvari, G. and Blanco, S. (2020b). Applications of cyanobacteria in biomedicine. InHandb. Algal Science, Microbiology, Technology, and Medicine: 441-454.
· Panjiar, N., Mishra, S., Yadav, A.N. and Verma, P. (2017). Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. Microbial Functional Foods and Nutraceuticals, 21-37.
· Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., et al. (2010). Rediscovering cyanobacteria as valuable sources of bioactive compounds. Applied Biochemistry and Microbiology, 46(2): 119-134.
· Rajabpour, N., Nowruzi, B. and Ghobeh, M. (2019). Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biologica Slovenica, 62(2): 1-14.
· Rezanka, T. and Dembitsky, V.M. (2006). Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae. Folia Microbiologica, 51(3): 159-182.
· Safavi, M., Nowruzi, B., Estalaki, S. and Shokri, M. (2019). Biological Activity of Methanol Extract from Nostoc sp. N42 and Fischerella sp. S29 Isolated from aquatic and terrestrial ecosystems. International Journal on Algae, 21(4): 373-391.
· Sathasivam, R., Radhakrishnan, R., Hashem, A. and Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4): 709-722.
· Singh, S., Kate, B.N. and Banerjee, U.C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3): 73-95.
· Zahra, Z., Choo, D.H., Lee, H. and Parveen, A. (2020). Cyanobacteria: review of current potentials and applications. Environments, 7(2): 13.
· Zanchett, G. and Oliveira-Filho, E.C. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10): 1896-1917.