طراحی کارآمد تقسیم کننده غیربازیابی برگشت پذیر با قابلیت حفظ توازن
الموضوعات :محمد طالبی 1 , محمد مصلح 2 , محسن چکین 3
1 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحد دزفول، دزفول، ایران
2 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحددزفول، دزفول، ایران
3 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحد دزفول، دزفول، ایران
الکلمات المفتاحية: تقسیم کننده, الگوریتم با روش غیربازیابی, محاسبات کوانتومی, منطق برگشت پذیر, مدار برگشت پذیر با قابلیت حفظ توازن ,
ملخص المقالة :
یکی از چالش¬های اساسی در مدارات مجتمع پرتراکم، اتلاف توان مصرفی است که به واسطه وجود ترانزیستورها در مدارات ایجاد می¬شود و موجب می¬گردد دمای مدار افزایش یابد. طراحی مدارات دیجیتال به شیوه برگشتپذیر می¬تواند به عنوان یکی از رویکردهای کارآمد برای رفع این چالش به کار گرفته شود. علاوه بر این، طراحی مدارات برگشتپذیر با قابلیت حفظ توازن می¬تواند در تشخیص اشکالات در مدارات بسیار مؤثر باشد. تقسیمکننده¬ها به عنوان یکی از مدارات پرکاربرد در سیستم¬های محاسباتی دیجیتال مورد استفاده قرار می¬گیرند. مدارات تقسیم¬کننده متشکل از واحد¬های پایه¬ای جمع¬کننده، مالتی¬پلکسر و دو مدار ترتیبی ثبات و ثبات شیفت به چپ با قابلیت بار شدن موازی هستند. این مقاله یک طراحی جدید و کارآمد از تقسیم-کننده غیربازیابی برگشت¬پذیر با قابلیت حفظ توازن ارائه می¬کند. برای این منظور در ابتدا یک نگهدارنده حالت نوع D برگشتپذیر با قابلیت حفظ توازن پیشنهاد شده است. سپس یک ثبات n بیتی برگشت¬پذیر با قابلیت حفظ توازن با استفاده از نگهدارنده حالت برگشت¬پذیر پیشنهادی ارائه گردیده است. در ادامه یک شیفت ثبات n+1 بیتی برگشتپذیر با ¬قابلیت حفظ توازن با استفاده از نگهدارنده پیشنهادی و سایر دروازههای برگشتپذیر پیشنهاد شده است. در نهایت تقسیم¬کننده برگشت¬پذیر n بیتی با قابلیت حفظ توازن بر اساس الگوریتم غیربازیابی توسعه یافته است. نتایج حاصل از مقایسه¬ها نشان می¬دهند مدار پیشنهادی از لحاظ معیارهای ارزیابی مدارات برگشت¬پذیر همچون هزینه کوانتومی، تعداد ورودی¬های ثابت و تعداد خروجی-های زائد در مقایسه با کارهای پیشین برتری دارند.
Proposing a reversible D-latch memory with parity preserving ability
Introducing a reversible register with parity preserving ability
Providing a parity preserving reversible left-shift register with parallel load capability (PIPO)
Development of an efficient parity preserving reversible non-restoring divider using the proposed circuits
[1] S. R. Heikalabad, F. Salimzadeh and Y. Z. Barughi, "A unique three-layer full adder in quantum-dot cellular automata," Computers & Electrical Engineering, vol. 86, p. 106735, 2020, doi: 10.1016/j.compeleceng.2020.106735.
[2] S.-S. Ahmadpour, M. Mosleh and S. R. Heikalabad, "An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata," Computers & Electrical Engineering, vol. 82, p. 106548, 2020, doi: 10.1016/j.compeleceng.2020.106548.
[3] R. Binaei and M. Gholami, "Design of novel D flip-flops with set and reset abilities in quantum-dot cellular automata nanotechnology," Computers & Electrical Engineering, vol. 74, pp. 259-272, 2019, doi: 10.1016/j.compeleceng.2019.02.002.
[4] M. Noorallahzadeh, M. Mosleh and S.-S. Ahmadpour, "Efficient designs of reversible synchronous counters in nanoscale," Circuits, Systems, and Signal Processing, vol. 40, no. 11, pp. 5367-5380, 2021, doi: 10.1007/s00034-021-01719-4.
[5] M. Noorallahzadeh and M. Mosleh, "Efficient designs of reversible shift register circuits with low quantum cost," Journal of Circuits, Systems and Computers, vol. 30, no. 12, p. 2150215, 2021, doi: 10.1142/S0218126621502157.
[6] T. Liu et al., "Efficient scheme for implementing a hybrid Toffoli gate with two NV ensembles simultaneously controlling a single superconducting qubit," Applied Physics Letters, vol. 123, no. 13, 2023, doi: 10.1063/5.0169902.
[7] M. Noorallahzadeh and M. Mosleh, "Parity-preserving reversible flip-flops with low quantum cost in nanoscale," The Journal of Supercomputing, vol. 76, no. 3, pp. 2206-2238, 2020, doi: 10.1007/s11227-019-03074-3.
[8] R. Landauer, "Irreversibility and heat generation in the computing process," IBM journal of research and development, vol. 5, no. 3, pp. 183-191, 1961, doi: 10.1147/rd.53.0183.
[9] G. E. Moore, "Cramming more components onto integrated circuits," ed: McGraw-Hill New York, NY, USA:, 1965.
[10] C. H. Bennett, "Logical reversibility of computation," IBM journal of Research and Development, vol. 17, no. 6, pp. 525-532, 1973, doi: 10.1147/rd.176.0525.
[11] M. Noorallahzadeh and M. Mosleh, "Parity-preserving reversible flip-flops with low quantum cost in nanoscale," The Journal of Supercomputing, pp. 1-33, 2019, doi: 10.1007/s11227-019-03074-3.
[12] S. Sayedsalehi, M. R. Azghadi, S. Angizi and K. Navi, "Restoring and non-restoring array divider designs in quantum-dot cellular automata," Information sciences, vol. 311, pp. 86-101, 2015, doi: 10.1016/j.ins.2015.03.030.
[13] N. M. Nayeem, A. Hossain, M. Haque, L. Jamal and H. M. H. Babu, "Novel reversible division hardware," in 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009, pp. 1134-1138, doi: 10.1109/MWSCAS.2009.5235968.
[14] F. Dastan and M. Haghparast, "A novel nanometric fault tolerant reversible divider," International Journal of Physical Sciences, vol. 6, no. 24, pp. 5671-5681, 2011, doi: 10.5897/IJPS11.981.
[15] H. M. H. Babu and M. S. Mia, "Design of a compact reversible fault tolerant division circuit," Microelectronics Journal, vol. 51, pp. 15-29, 2016, doi: 10.1016/j.mejo.2016.01.003.
[16] M. Talebi, M. Mosleh, M. Haghparast and M. Chekin, "Effective scheme of parity-preserving-reversible floating-point divider," The European Physical Journal Plus, vol. 137, no. 9, pp. 1-13, 2022, doi: 10.1140/epjp/s13360-022-03212-6.
[17] M. Valinataj, M. Mirshekar and H. Jazayeri, "Novel low-cost and fault-tolerant reversible logic adders," Computers & Electrical Engineering, vol. 53, pp. 56-72, 2016, doi: 10.1016/j.compeleceng.2016.06.008.
[18] A. Sarker, H. M. Hasan Babu and S. M. M. Rashid, "Design of a DNA‐based reversible arithmetic and logic unit," IET nanobiotechnology, vol. 9, no. 4, pp. 226-238, 2015, doi: 10.1049/iet-nbt.2014.0056.
[19] B. Parhami, "Fault-tolerant reversible circuits," in 2006 fortieth asilomar conference on signals, systems and computers, 2006, pp. 1726-1729, doi: 10.1109/ACSSC.2006.355056.
[20] E. PourAliAkbar, K. Navi, M. Haghparast and M. Reshadi, "Novel Optimum Parity-Preserving Reversible Multiplier Circuits," Circuits, Systems, and Signal Processing, vol. 39, no. 10, pp. 5148-5168, 2020, doi: 10.1007/s00034-020-01406-w
[21] E. PourAliAkbar, K. Navi, M. Haghparast and M. Reshadi, "Novel Designs of Fast Parity-Preserving Reversible Vedic Multiplier," E. PourAliAkbar, K. Navi, M. Haghparast, and M. Reshadi, "Novel Designs of Fast Parity-Preserving Reversible Vedic Multiplier", The CSI Journal on Computer Science and Engineering, vol. 17, no. 1, 2019.
[22] S. R. Arabani, M. R. Reshadinezhad and M. Haghparast, "Design of a parity preserving reversible full adder/subtractor circuit," International Journal of Computational Intelligence Studies, vol. 7, no. 1, pp. 19-32, 2018, doi: 10.1504/IJCISTUDIES.2018.090164.
[23] N. K. Misra, B. Sen, S. Wairya and B. Bhoi, "Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA," Journal of Circuits, Systems and Computers, vol. 26, no. 09, p. 1750145, 2017, doi: 10.1142/S0218126617501456.
[24] M. Haghparast and A. Bolhassani, "On design of parity preserving reversible adder circuits," International Journal of Theoretical Physics, vol. 55, no. 12, pp. 5118-5135, 2016, doi: 10.1007/s10773-016-3133-5.
[25] R.-G. Zhou, Y.-C. Li and M.-Q. Zhang, "Novel designs for fault tolerant reversible binary coded decimal adders," International Journal of Electronics, vol. 101, no. 10, pp. 1336-1356, 2014, doi: 10.1080/00207217.2013.832388.
[26] M. Islam and Z. Begum, "Reversible logic synthesis of fault tolerant carry skip BCD adder," arXiv preprint arXiv:1008.3288, 2010, doi: 10.48550/arXiv.1008.3288.
[27] S. Hod, "Best approximation to a reversible process in black-hole physics and the area spectrum of spherical black holes," Physical Review D, vol. 59, no. 2, p. 024014, 1998, doi: 10.1103/PhysRevD.59.024014.
[28] R. C. Merkle, "Two types of mechanical reversible logic," Nanotechnology, vol. 4, no. 2, p. 114, 1993, doi: 10.1088/0957-4484/4/2/007.
[29] M. Noorallahzadeh, M. Mosleh and K. Datta, "A new design of parity-preserving reversible multipliers based on multiple-control toffoli synthesis targeting emerging quantum circuits," Frontiers of Computer Science, vol. 18, no. 6, p. 186908, 2024, doi: 10.1007/s11704-023-2492-3.
[30] A. Bolhassani and M. Haghparast, "Optimised reversible divider circuit," International Journal of Innovative Computing and Applications, vol. 7, no. 1, pp. 13-33, 2016, doi: 10.1504/IJICA.2016.075465.
[31] H. Thapliyal and N. Ranganathan, "Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, no. 4, pp. 1-31, 2010, doi: 10.1145/1877745.1877748.
[32] M. Mohammadi and M. Eshghi, "On figures of merit in reversible and quantum logic designs," Quantum Information Processing, vol. 8, pp. 297-318, 2009, doi: 10.1007/s11128-009-0106-0.
[33] A. Barenco et al., "Elementary gates for quantum computation," Physical review A, vol. 52, no. 5, p. 3457, 1995, doi: 10.1103/PhysRevA.52.3457.
[34] M. Morrison and N. Ranganathan, "Design of a reversible ALU based on novel programmable reversible logic gate structures," in IEEE computer society annual symposium on VLSI, 2011, pp. 126-131, doi: 10.1109/ISVLSI.2011.30.
[35] M. Morrison and N. Ranganathan, "A novel optimization method for reversible logic circuit minimization," in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2013, pp. 182-187, doi: 10.1109/ISVLSI.2013.6654656.
[36] D. M. Miller, M. Soeken and R. Drechsler, "Mapping NCV circuits to optimized Clifford+T circuits," in International Conference on Reversible Computation, 2014, pp. 163-175, doi: 10.1007/978-3-319-08494-7_13.
[37] M. Noorallahzadeh and M. Mosleh, "Efficient designs of reversible BCD to EX-3 Converter with low quantum cost in nanoscale," International Journal of Quantum Information, vol. 18, no. 05, p. 2050020, 2020, doi: 10.1142/S0219749920500203.
[38] E. Fredkin and T. Toffoli, "Conservative logic," Int. J. of Theoretical Physics, vol. 21, pp. 219-253, 1982, doi: 10.1007/BF01857727.
[39] M. Noorallahzadeh, M. Mosleh, S. S. Ahmadpour, J. Pal and B. Sen, "A new design of parity preserving reversible Vedic multiplier targeting emerging quantum circuits," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, p. e3089, 2023, doi: 10.1002/jnm.3089.
[40] B. K. Bhoi, N. K. Misra and M. Pradhan, "Synthesis and simulation study of non-restoring cell architecture layout in perpendicular nano-magnetic logic," Journal of Computational Electronics, vol. 19, no. 1, pp. 407-418, 2020, doi: 10.1007/s10825-019-01432-1.
[41] M. Haghparast and K. Navi, "Novel reversible fault tolerant error coding and detection circuits," International Journal of Quantum Information, vol. 9, no. 02, pp. 723-738, 2011, doi: 10.1142/S0219749911007447.
[42] A. Banerjee, "Reversible cryptographic hardware with optimized quantum cost and delay," in Annual IEEE India Conference (INDICON), 2010, pp. 1-4, doi: 10.1109/INDCON.2010.5712605.