طراحی کارآمد تقسیم کننده غیربازیابی برگشت پذیر با قابلیت حفظ توازن
محورهای موضوعی : نانوالکترونیکمحمد طالبی 1 , محمد مصلح 2 , محسن چکین 3
1 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحد دزفول، دزفول، ایران
2 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحددزفول، دزفول، ایران
3 - دانشکده فنی و مهندسی، گروه کامپیوتر، دانشگاه آزاد اسلامی واحد دزفول، دزفول، ایران
کلید واژه: تقسیم کننده, الگوریتم با روش غیربازیابی, محاسبات کوانتومی, منطق برگشت پذیر, مدار برگشت پذیر با قابلیت حفظ توازن ,
چکیده مقاله :
یکی از چالش¬های اساسی در مدارات مجتمع پرتراکم، اتلاف توان مصرفی است که به واسطه وجود ترانزیستورها در مدارات ایجاد می¬شود و موجب می¬گردد دمای مدار افزایش یابد. طراحی مدارات دیجیتال به شیوه برگشتپذیر می¬تواند به عنوان یکی از رویکردهای کارآمد برای رفع این چالش به کار گرفته شود. علاوه بر این، طراحی مدارات برگشتپذیر با قابلیت حفظ توازن می¬تواند در تشخیص اشکالات در مدارات بسیار مؤثر باشد. تقسیمکننده¬ها به عنوان یکی از مدارات پرکاربرد در سیستم¬های محاسباتی دیجیتال مورد استفاده قرار می¬گیرند. مدارات تقسیم¬کننده متشکل از واحد¬های پایه¬ای جمع¬کننده، مالتی¬پلکسر و دو مدار ترتیبی ثبات و ثبات شیفت به چپ با قابلیت بار شدن موازی هستند. این مقاله یک طراحی جدید و کارآمد از تقسیم-کننده غیربازیابی برگشت¬پذیر با قابلیت حفظ توازن ارائه می¬کند. برای این منظور در ابتدا یک نگهدارنده حالت نوع D برگشتپذیر با قابلیت حفظ توازن پیشنهاد شده است. سپس یک ثبات n بیتی برگشت¬پذیر با قابلیت حفظ توازن با استفاده از نگهدارنده حالت برگشت¬پذیر پیشنهادی ارائه گردیده است. در ادامه یک شیفت ثبات n+1 بیتی برگشتپذیر با ¬قابلیت حفظ توازن با استفاده از نگهدارنده پیشنهادی و سایر دروازههای برگشتپذیر پیشنهاد شده است. در نهایت تقسیم¬کننده برگشت¬پذیر n بیتی با قابلیت حفظ توازن بر اساس الگوریتم غیربازیابی توسعه یافته است. نتایج حاصل از مقایسه¬ها نشان می¬دهند مدار پیشنهادی از لحاظ معیارهای ارزیابی مدارات برگشت¬پذیر همچون هزینه کوانتومی، تعداد ورودی¬های ثابت و تعداد خروجی-های زائد در مقایسه با کارهای پیشین برتری دارند.
One of the basic challenges in high-density integrated circuits is loss of power consumption, which is caused by presence of transistors in circuits and causes the temperature of the circuit to increase. The design of digital circuits in a reversible way can be used as one of efficient approaches to solve this challenge. In addition, the design of parity-preserving reversible circuits can be very effective in detecting faults in circuits. Dividers are used as one of the most widely used circuits in digital computing systems. Divider circuits include an adder, a multiplexer and two sequential register and parallel-in to parallel-out left shift register circuits. This paper is presented a new and efficient design of a parity-preserving reversible non-restoring divider. For this purpose, first, a parity-preserving reversible D-latch is proposed. second, a parity-preserving reversible n-bit register is presented using the proposed reversible D-latch. Third, a parity-preserving reversible (n+1) bit shift register using the proposed reversible D-latch and other reversible gates is proposed. Finally, a parity-preserving reversible n bit divider is developed based on the non-restoring algorithm. The results of comparisons show that the proposed circuit is superior in terms of evaluation criteria of reversible circuits such as quantum cost, number of constant inputs and number of garbage outputs compared to previous works.
پیشنهاد یک حافظه نگهدارنده حالت (D-latch) D برگشتپذیر با قابلیت حفظ توازن
معرفی یک ثبات برگشت پذیر با قابلیت حفظ توازن
ارائه یک ثبات شیفت به چپ با قابلیت بار موازی (PIPO) برگشتپذیر با قابلیت حفظ توازن
توسعه یک تقسیم کننده غیربازیابی برگشت پذیر کارآمد با قابلیت حفظ توازن با استفاده از مدارات پیشنهادی
[1] S. R. Heikalabad, F. Salimzadeh and Y. Z. Barughi, "A unique three-layer full adder in quantum-dot cellular automata," Computers & Electrical Engineering, vol. 86, p. 106735, 2020, doi: 10.1016/j.compeleceng.2020.106735.
[2] S.-S. Ahmadpour, M. Mosleh and S. R. Heikalabad, "An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata," Computers & Electrical Engineering, vol. 82, p. 106548, 2020, doi: 10.1016/j.compeleceng.2020.106548.
[3] R. Binaei and M. Gholami, "Design of novel D flip-flops with set and reset abilities in quantum-dot cellular automata nanotechnology," Computers & Electrical Engineering, vol. 74, pp. 259-272, 2019, doi: 10.1016/j.compeleceng.2019.02.002.
[4] M. Noorallahzadeh, M. Mosleh and S.-S. Ahmadpour, "Efficient designs of reversible synchronous counters in nanoscale," Circuits, Systems, and Signal Processing, vol. 40, no. 11, pp. 5367-5380, 2021, doi: 10.1007/s00034-021-01719-4.
[5] M. Noorallahzadeh and M. Mosleh, "Efficient designs of reversible shift register circuits with low quantum cost," Journal of Circuits, Systems and Computers, vol. 30, no. 12, p. 2150215, 2021, doi: 10.1142/S0218126621502157.
[6] T. Liu et al., "Efficient scheme for implementing a hybrid Toffoli gate with two NV ensembles simultaneously controlling a single superconducting qubit," Applied Physics Letters, vol. 123, no. 13, 2023, doi: 10.1063/5.0169902.
[7] M. Noorallahzadeh and M. Mosleh, "Parity-preserving reversible flip-flops with low quantum cost in nanoscale," The Journal of Supercomputing, vol. 76, no. 3, pp. 2206-2238, 2020, doi: 10.1007/s11227-019-03074-3.
[8] R. Landauer, "Irreversibility and heat generation in the computing process," IBM journal of research and development, vol. 5, no. 3, pp. 183-191, 1961, doi: 10.1147/rd.53.0183.
[9] G. E. Moore, "Cramming more components onto integrated circuits," ed: McGraw-Hill New York, NY, USA:, 1965.
[10] C. H. Bennett, "Logical reversibility of computation," IBM journal of Research and Development, vol. 17, no. 6, pp. 525-532, 1973, doi: 10.1147/rd.176.0525.
[11] M. Noorallahzadeh and M. Mosleh, "Parity-preserving reversible flip-flops with low quantum cost in nanoscale," The Journal of Supercomputing, pp. 1-33, 2019, doi: 10.1007/s11227-019-03074-3.
[12] S. Sayedsalehi, M. R. Azghadi, S. Angizi and K. Navi, "Restoring and non-restoring array divider designs in quantum-dot cellular automata," Information sciences, vol. 311, pp. 86-101, 2015, doi: 10.1016/j.ins.2015.03.030.
[13] N. M. Nayeem, A. Hossain, M. Haque, L. Jamal and H. M. H. Babu, "Novel reversible division hardware," in 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009, pp. 1134-1138, doi: 10.1109/MWSCAS.2009.5235968.
[14] F. Dastan and M. Haghparast, "A novel nanometric fault tolerant reversible divider," International Journal of Physical Sciences, vol. 6, no. 24, pp. 5671-5681, 2011, doi: 10.5897/IJPS11.981.
[15] H. M. H. Babu and M. S. Mia, "Design of a compact reversible fault tolerant division circuit," Microelectronics Journal, vol. 51, pp. 15-29, 2016, doi: 10.1016/j.mejo.2016.01.003.
[16] M. Talebi, M. Mosleh, M. Haghparast and M. Chekin, "Effective scheme of parity-preserving-reversible floating-point divider," The European Physical Journal Plus, vol. 137, no. 9, pp. 1-13, 2022, doi: 10.1140/epjp/s13360-022-03212-6.
[17] M. Valinataj, M. Mirshekar and H. Jazayeri, "Novel low-cost and fault-tolerant reversible logic adders," Computers & Electrical Engineering, vol. 53, pp. 56-72, 2016, doi: 10.1016/j.compeleceng.2016.06.008.
[18] A. Sarker, H. M. Hasan Babu and S. M. M. Rashid, "Design of a DNA‐based reversible arithmetic and logic unit," IET nanobiotechnology, vol. 9, no. 4, pp. 226-238, 2015, doi: 10.1049/iet-nbt.2014.0056.
[19] B. Parhami, "Fault-tolerant reversible circuits," in 2006 fortieth asilomar conference on signals, systems and computers, 2006, pp. 1726-1729, doi: 10.1109/ACSSC.2006.355056.
[20] E. PourAliAkbar, K. Navi, M. Haghparast and M. Reshadi, "Novel Optimum Parity-Preserving Reversible Multiplier Circuits," Circuits, Systems, and Signal Processing, vol. 39, no. 10, pp. 5148-5168, 2020, doi: 10.1007/s00034-020-01406-w
[21] E. PourAliAkbar, K. Navi, M. Haghparast and M. Reshadi, "Novel Designs of Fast Parity-Preserving Reversible Vedic Multiplier," E. PourAliAkbar, K. Navi, M. Haghparast, and M. Reshadi, "Novel Designs of Fast Parity-Preserving Reversible Vedic Multiplier", The CSI Journal on Computer Science and Engineering, vol. 17, no. 1, 2019.
[22] S. R. Arabani, M. R. Reshadinezhad and M. Haghparast, "Design of a parity preserving reversible full adder/subtractor circuit," International Journal of Computational Intelligence Studies, vol. 7, no. 1, pp. 19-32, 2018, doi: 10.1504/IJCISTUDIES.2018.090164.
[23] N. K. Misra, B. Sen, S. Wairya and B. Bhoi, "Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA," Journal of Circuits, Systems and Computers, vol. 26, no. 09, p. 1750145, 2017, doi: 10.1142/S0218126617501456.
[24] M. Haghparast and A. Bolhassani, "On design of parity preserving reversible adder circuits," International Journal of Theoretical Physics, vol. 55, no. 12, pp. 5118-5135, 2016, doi: 10.1007/s10773-016-3133-5.
[25] R.-G. Zhou, Y.-C. Li and M.-Q. Zhang, "Novel designs for fault tolerant reversible binary coded decimal adders," International Journal of Electronics, vol. 101, no. 10, pp. 1336-1356, 2014, doi: 10.1080/00207217.2013.832388.
[26] M. Islam and Z. Begum, "Reversible logic synthesis of fault tolerant carry skip BCD adder," arXiv preprint arXiv:1008.3288, 2010, doi: 10.48550/arXiv.1008.3288.
[27] S. Hod, "Best approximation to a reversible process in black-hole physics and the area spectrum of spherical black holes," Physical Review D, vol. 59, no. 2, p. 024014, 1998, doi: 10.1103/PhysRevD.59.024014.
[28] R. C. Merkle, "Two types of mechanical reversible logic," Nanotechnology, vol. 4, no. 2, p. 114, 1993, doi: 10.1088/0957-4484/4/2/007.
[29] M. Noorallahzadeh, M. Mosleh and K. Datta, "A new design of parity-preserving reversible multipliers based on multiple-control toffoli synthesis targeting emerging quantum circuits," Frontiers of Computer Science, vol. 18, no. 6, p. 186908, 2024, doi: 10.1007/s11704-023-2492-3.
[30] A. Bolhassani and M. Haghparast, "Optimised reversible divider circuit," International Journal of Innovative Computing and Applications, vol. 7, no. 1, pp. 13-33, 2016, doi: 10.1504/IJICA.2016.075465.
[31] H. Thapliyal and N. Ranganathan, "Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, no. 4, pp. 1-31, 2010, doi: 10.1145/1877745.1877748.
[32] M. Mohammadi and M. Eshghi, "On figures of merit in reversible and quantum logic designs," Quantum Information Processing, vol. 8, pp. 297-318, 2009, doi: 10.1007/s11128-009-0106-0.
[33] A. Barenco et al., "Elementary gates for quantum computation," Physical review A, vol. 52, no. 5, p. 3457, 1995, doi: 10.1103/PhysRevA.52.3457.
[34] M. Morrison and N. Ranganathan, "Design of a reversible ALU based on novel programmable reversible logic gate structures," in IEEE computer society annual symposium on VLSI, 2011, pp. 126-131, doi: 10.1109/ISVLSI.2011.30.
[35] M. Morrison and N. Ranganathan, "A novel optimization method for reversible logic circuit minimization," in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2013, pp. 182-187, doi: 10.1109/ISVLSI.2013.6654656.
[36] D. M. Miller, M. Soeken and R. Drechsler, "Mapping NCV circuits to optimized Clifford+T circuits," in International Conference on Reversible Computation, 2014, pp. 163-175, doi: 10.1007/978-3-319-08494-7_13.
[37] M. Noorallahzadeh and M. Mosleh, "Efficient designs of reversible BCD to EX-3 Converter with low quantum cost in nanoscale," International Journal of Quantum Information, vol. 18, no. 05, p. 2050020, 2020, doi: 10.1142/S0219749920500203.
[38] E. Fredkin and T. Toffoli, "Conservative logic," Int. J. of Theoretical Physics, vol. 21, pp. 219-253, 1982, doi: 10.1007/BF01857727.
[39] M. Noorallahzadeh, M. Mosleh, S. S. Ahmadpour, J. Pal and B. Sen, "A new design of parity preserving reversible Vedic multiplier targeting emerging quantum circuits," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, p. e3089, 2023, doi: 10.1002/jnm.3089.
[40] B. K. Bhoi, N. K. Misra and M. Pradhan, "Synthesis and simulation study of non-restoring cell architecture layout in perpendicular nano-magnetic logic," Journal of Computational Electronics, vol. 19, no. 1, pp. 407-418, 2020, doi: 10.1007/s10825-019-01432-1.
[41] M. Haghparast and K. Navi, "Novel reversible fault tolerant error coding and detection circuits," International Journal of Quantum Information, vol. 9, no. 02, pp. 723-738, 2011, doi: 10.1142/S0219749911007447.
[42] A. Banerjee, "Reversible cryptographic hardware with optimized quantum cost and delay," in Annual IEEE India Conference (INDICON), 2010, pp. 1-4, doi: 10.1109/INDCON.2010.5712605.