Preparation and Investigation of Bioactive Properties of Protein Hydrolysates from Yogurt Whey
الموضوعات :N. Karimi 1 , R. Pourahmad 2 , S. Taheri 3 , O. Eyvazzadeh 4
1 - Ph.D. Candidate of the Department of Food Science & Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
2 - Professor of the Department of Food Science and Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
3 - Assistant Professor, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
4 - Assistant Professor of the Department of Food Science and Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
الکلمات المفتاحية: antibacterial properties, Antioxidant Activity, Enzymatic Hydrolysis, Protein Hydrolysates, Yogurt Whey,
ملخص المقالة :
Yogurt whey contains lactose, lactic acid, soluble proteins, water-soluble vitamins, especially B vitamins, and minerals. Yogurt whey proteins can be a good source of bioactive peptides. In this study, we investigated the effect of enzyme type (pepsin and trypsin), temperature (37 and 50 °C) and time (120 and 240 min) of enzymatic hydrolysis on bioactive properties of protein hydrolysates prepared from yogurt whey. The results showed that increasing the enzymatic hydrolysis time from 120 to 240 min, increased the degree of hydrolysis, antioxidant activity (iron ion chelating activity, FRAP reducing activity and ABTS cation radical inhibitory activity) and antibacterial properties against various pathogenic bacteria (Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Listeria monocytogenes). Moreover, increasing the enzymatic hydrolysis temperature from 37 to 50 °C increased the degree of hydrolysis and decreased antioxidant activity and antibacterial property against Salmonella typhimurium. The antioxidant activity, antibacterial properties and hydrolysis degree of yogurt whey protein hydrolysates produced by trypsin were higher than those of pepsin. Two hydrolysates, were prepared with trypsin at 37 °C and pepsin at 50 °C for 240 min, were selected as the best samples in terms of bioactive properties.
Ahn, C. B., Cho, Y. S. & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151-156.
Barbosa Pelegrini, P., Del Sarto, R. P., Silva, O. N., Franco, O. L. & Grossi-de-Sa, M. F. (2011). Antibacterial peptides from plants: what they are and how they probably work. Biochemistry Research International, 9 pp. Doi: 101155/2011/250349.
Bylund, G. (2015). Dairy Processing Handbook. 3rd. ed. Tetra Pak Pro-cessing Systems AB, Lund, Sweden.
Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Jacinto- Hernández, C.,
Alaiz, M. & Girón- Calle, J. (2012). Antioxidant and metal chelating activities of
Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food
Chemistry, 131, 1157-1164.
Chai, K, F., Amanda Ying Hui Voo, A. Y. H. & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Food Science and Food Safety, 19: 3825–3885.
Chakrabarti, S., Jahandideh, F. & Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. Biomedicie Research International, 2014, 1-11.
Cheng, X., Tang, X., Wang, Q. & Mao, X. Y. (2013). Antibacterial effect and hydrophobicity of yak κ-casein hydrolysate and its fractions. International Dairy Journal, 31 (2), 111-116.
Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J. & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55.
Corrêa, A. P. F., Bertolini, D., Lopes, N.A., Veras, F.F., Gregory, G. & Brandelli, A. (2019).
Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey
hydrolysates. Food Science and Technology, 101,107-112.
De Castro, R. J. S. & Sato, H. H. (2015). Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185-198.
De Gobba, C., Tompa, G. & Otte, J. (2014). Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacteriumikkense. Food Chemistry, 165, 205-215.
El-Fattah, A. M. A., Sakr, S. S., El-Dieb, S. M. & Elkashef, H. A. S. (2017). Bioactive peptides with ACE-I and antioxidant activity produced from milk proteolysis. International Journal of Food Properties, 20(12), 3033-3042.
El-Fattah, A. M. A., Sakr, S. S., El-Dieb, S. M. & Elkashef, H. A. S. (2018). Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. Food Science and Technology, 98, 390-397.
Elias, R. J., Sarah, S., Kellerby, S. S. & Decker, E. A. (2008). Antioxidant Activity of Proteins and Peptides. Critical Reviews in Food Science and Nutrition, 48, 430-441.
Gouda, A. S., Adbelruhman, F. G., Alenezi, H. S. & Mégarbane, B. (2021). Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients - A narrative review and hypotheses. Saudi Journal of Biological Science, 28 (10), 5897-5905.
Haldar, S. & Krishnananda, C. (2010). Role of Protein Stabilizers on the Conformation of the olded State of Cytochrome c and Its Early Folding Kinetics: Investigation at single molecular resolution. Journal of Biology and Chemistry, 285, 25314-25323.
Huang, S., Chen, K. N., Chen, Y. P., Hong, W. S. & Chen, M. J. (2010). Immunomodulatory properties of the milk whey products obtained by enzymatic and microbial hydrolysis. International Journal of Food Science and Technology, 45, 1061-1067.
Janine, B., Maryanne, D. & Allen, F. E. (2005). Design of a Beverage from Whey Permeate. Journal of Food Science, 70 (4), 277-285.
Jenssen, H., Hamill, P. & Hancock, R. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19, 491-511.
Ktari, N., Khaled, B. H., Nasri, R., Jellouli, K, Ghorbel, S. & Nasri, M. (2012). Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterization and potential application as a detergent additive. Food Chemistry, 130, 467-474.
Kumar, D., Kumar Chatli, M., Singh, R., Mehta, N. & Kumar, P. (2016a). Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research, 139, 20-25.
Kumar, D., Kumar Chatli, M., Singh, R., Mehta, N. & Kumar, P. (2016b). Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Science and Technology, 96 (3), 391-404.
Liu, Q., Kong, B., Xiong, Y. L. & Xi, X. (2010). Antioxidant Activity and Functional Properties of Porcine Plasma Protein Hydrolysate as influenced by the Degree of Hydrolysis. Food Chemistry, 118, 403-410.
Luo, Y., Pan, K. & Zhong, Q. (2014). Physical, Chemical and Biochemical Properties of Casein Hydrolyzed by Three Proteases: Partial Characterizations. Food Chemistry, 155, 146-155.
Miliauskas, G., Venskutonis, P. R. & Beek, T.A.V. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85, 231-237.
Mirzaei, M., Mirdamadi, S., Ehsani, M. R., Aminlari, M. & Hosseini, E. (2015). Purification and
identification of antioxidant and ACE-inhibitory peptid from Saccharomyces cerevisiae
protein hydrolysate. Journal of Functional Foods, 19, 259-268.
Motta, A. S. & Brandelli, A. (2002). Characterization of an antimicrobial peptide produced by Brevibacterium linens. Journal of Applied Microbiology, 92, 63-70.
Nalinanon, S. T., Benjakul, S., Kishimura, H. & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124, 1354-1362.
Nguyen, H. T. H., Jessica, L., Gathercole, G. L., Day, L. & Dalziel, J. E. (2020). Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat. Food Chemistry, 317, 126419.
Ramos-Villarroel, A. Y., Soliva-Fortuny, R. & Martın-Belloso, O. (2016). Modeling the inactivation of Listeria innocua and Escherichia coli in fresh-cut tomato treated with pulsed light. Food Bioprocess Technology, 10, 266-274.
Reed, R. G., Feldhoff, R. C., Clute, O. L. & Peters, T. (1975). Fragments of bovine serum albumin produced by limited proteolysis. Conformation and ligand binding. Biochemistry, 14, 4578-4583.
Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, Sh., Miyagusuku-Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, F. & García-Cano, I. (2020). Invited review: Acid whey trends and health benefits. Journal of Dairy Science. 104,1262–1275.
Sarmadi, B. H. & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31, 1949-1956.
Sedaghati, M., Ezzatpanah, H., Mashhadi Akbar Boojar, M., Tajabadi Ebrahimi, M. & Kobarfard, F. (2016). Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein. LWT- Food Science and Technology, 68, 217-225.
Shahidi, F. & Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International, 91, 914-931.
Shahidi, F. & Alasalvar, C. (2011). Marine oils and other marine nutraceuticals. In Alasalvar, C., Shahidi, F., Miyashita, K. & Wanasundara, U. (Eds.). Handbook of Seafood Quality, Safety and Health Applications. Oxford, UK: Wiley-Blackwell.
Shu, G., Huang, J., Bao, C., Meng, J., Chen, H. & Cao, J. (2018). Effect of Different Proteases on the Degree of Hydrolysis and Angiotensin I-Converting Enzyme-Inhibitory Activity in Goat and Cow Milk. Biomolecules, 8, 101-109.
Singh, B. P., Vij, S. & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171-179.
Silva, S. V., Pihlanto, A. & Malcata, X. F. (2006). Bioactive Peptides in Ovine and Caprine Cheeselike Systems Prepared with Proteases from Cynaracardunculus. Journal of Dairy Science, 89 (9), 3336-3344.
Skrzypczak, K., Gustaw, W., Fornal, E., Kononiuk, A., Michalak-Majewska, M., Radzki, W. & Wa´sko, A. (2020). Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Science, 10(7089), 1-14.
Tang, W., Zhang, H., Wang, L., Qian, H. & Qi, X. (2015).Targetedseparation of antibacterial peptidefrom protein hydrolysate ofanchovy cooking wastewater byequilibrium dialysis. Food Chemistry, 168, 115-123.
Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Science and Technology, 36, 137-143.
Vanderghem, C., Francis, F., Danthine, S., Deroanne, C., Paquot, M. & Pauw, E. D. (2011). Study on the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins. International Dairy Journal, 21, 312-318.
Varghese, J. & Haridas, M. (2007). Prospects of Jackfruit Blend Yoghurt Whey. World Journal of Dairy and Food Sciences, 2(1), 35-37.
Yang, L., Weiss, T. M., Lehrer, R. I. & Huang, H. W. (2000). Crystallization of antimicrobial
pores in membranes: magainin and protegrin. Biophysical Journal, 79, 2002-2009.
Zhao, L., Budge, S. M., Ghaly, A. E., Brooks, M. S. & Dave, D. (2011). Extraction, Purification and Characterization of Fish Pepsin: A Critical Review. Journal of Food Process and Technology, 2 (6), 1-14.