بررسی خواص آنتی اکسیدانی عصاره گیاه Calendula officinalis (گل همیشه بهار) و نقش آن در سنتز نانو ذرات اکسید
الموضوعات :فرشته نعمت الهی 1 , فریده طاهری کنجینی 2 , فریبا زمانی هرگلانی 3
1 - استادیار گروه شیمی تجزیه , دانشکده علوم پایه , واحد تهران شرق , دانشگاه آزاد اسلامی , تهران , ایران
2 - دانش آموخته کارشناسی ارشد شیمی تجزیه, گروه شیمی , واحد علوم و تحقیقات، دانشگاه آزاد اسلامی, تهران , ایران
3 - استادیار محیط زیست، دانشکده منابع طبیعی و محیط زیست , واحد علوم و تحقیقات، دانشگاه آزاد اسلامی, تهران , ایران
الکلمات المفتاحية: اکسید روی, عصاره, فعالیت آنتی اکسیدانی, گل همیشه, نانوذره,
ملخص المقالة :
مقدمه: سنتز نانو ذرات اکسید روی به دلیل کاربردهای فراوان در صنعت بسته بندی، حفظ سلامت مواد غذایی و بعنوان مواد افزودنی مجاز در خوراکی ها وافزایش ماندگاری آنها بسیار ارزشمند است.مواد و روش ها: در این تحقیق سنتز سبز نانوذرات روی اکسید با استفاده از روی استات دی هیدرات و عصاره گل همیشه بهار به عنوان عامل احیا کننده و پایدارکننده انجام شد. خواص آنتی اکسیدانی عصاره گل همیشه بهار از نظر مقدار فنول وفلاونوئید بررسی گردید. اسید گالیک بهعنوان استاندارد برای رسم منحنی کالیبراسیون مورد استفاده قرار گرفت.یافته ها : مقدار ترکیبات فنولی کل عصاره آبی گل همیشهبهار برابر با 303 میلیگرم گالیک اسید در گرم عصاره گزارش شد. قدرت آنتی اکسیدانی این عصاره توسط سنجش مهار رادیکال آزاد 2،2 - دی فنیل- 1-پیکریل هیدرازیل (DPPH) ارزیابی گردید. نانوذرات حاصله با استفاده از روش های مختلف از قبیل طیف سنجی مادون قرمز تبدیل فوریه (FTIR)، پراش پرتو ایکس و تصاویر میکروسکوپی الکترون روبشی (SEM) مشخصه یابی شدند.نتیجه گیری : اندازه نانوذرات توسط عصاره گل همیشه بهار 8 الی 22 نانومتر به دست آمد. قطر متوسط نانوذرات سنتز شده بدون استفاده از عصاره گیاه بعنوان پایدارکننده، بزرگتر بوده و بیشتر از 18 نانومتر گزارش گردید. همچنین کلوخگی و انباشتگی بیشتری نیز در میان این نانوذرات مشاهده شد. عصاره گل همیشه بهار پتانسیل خوبی جهت سنتز سبز نانوذرات از خود نشان داد.
Ai, T., Wang, F., Feng, X. & Ruan, M. (2014). Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International, 40, 9947-9953.
Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M. & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8, 82-88.
Amdagni, P. & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University,30, 168-175.
Anon. (2020). https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs
Bhainsa, K. C. & Dsouza, S. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164.
Dobrucka, R. & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences,4, 517-523.
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing,34,365-372.
Fouda, A., Saad, E., Salem, S. S. & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252-261
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J. & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7, 2597-2606.
Luque, P., Nava, O., Soto-robles, C., Vilchis-nestor, A., Garrafa-galvez, H. & Castro-beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638-17643.
Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C. A. Mey. International Journal of Bioscience, 6, 30-35
Ngoepe, N., Bita, Z., Mathipa, M., Mketo, N., Ntsendwana, B. & Hintsho-mbita, N.( 2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999-17006.
Nohwal, B., Chaudhary, R., Kumar, P. & Pundir, C. (2019). Fabrication and application of an amperometric lysine biosensor based on covalently immobilized lysine oxidase nanoparticles onto Au electrode. International Journal of Biological Macromolecules,18, 56-59
Patil, B. N. & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology, 5, 197-204.
Pulit-prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553.
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95.
Saha, R., Subramani, K., Raju, S. A. M., Rangaraj, S. & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91.
Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459-465.
Suresh, D., Nethravathi, P. & Rajanaika, H. (2015). Green synthesis of multifunctional zinc oxide nanoparticles using Cassiafistula plant extract and their photodegradative, antioxidant. MaterialsScienceinSemiconductorProcessing, 446-454.
Taran, M., Rad, M. & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium, 8, 81-83
Thema, F., Manikandan, E., Dhlamini, M. & Maazal, M. (2015). Green synthesis of ZnO . nanoparticles via Agathosma betulina extract. Materials Letters, 54- 63.
Vardan Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G. & Comini, E. (2018). Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 6- 16; doi:10.3390/chemosensors6020016
Vasilache, V., Popa, C., Filote, C., Cretu, M. A. & Benta, M. (2011). Nanoparticles application for improving the food safety and food processing. 7th International Conference on Materials Science and Engineering. 12, 1(31), 77-81
Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y. & Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir, 29, 5573-5580.
_||_
Ai, T., Wang, F., Feng, X. & Ruan, M. (2014). Microstructural and mechanical properties of dual Ti3AlC2–Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing. Ceramics International, 40, 9947-9953.
Alaghemand, A., Khaghani, S., Bihamta, M. R., Gomarian, M. & Ghorbanpour, M. (2018). Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. Journal of Nanostructures, 8, 82-88.
Amdagni, P. & Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University,30, 168-175.
Anon. (2020). https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs
Bhainsa, K. C. & Dsouza, S. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164.
Dobrucka, R. & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences,4, 517-523.
Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing,34,365-372.
Fouda, A., Saad, E., Salem, S. S. & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252-261
Fu, F., Li, L., Liu, L., Cai, J., Zhang, Y., Zhou, J. & Zhang, L. (2015). Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Applied Materials & Interfaces, 7, 2597-2606.
Luque, P., Nava, O., Soto-robles, C., Vilchis-nestor, A., Garrafa-galvez, H. & Castro-beltran, A. (2018). Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 17638-17643.
Nematollahi, F. (2015). Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C. A. Mey. International Journal of Bioscience, 6, 30-35
Ngoepe, N., Bita, Z., Mathipa, M., Mketo, N., Ntsendwana, B. & Hintsho-mbita, N.( 2018). Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 44, 16999-17006.
Nohwal, B., Chaudhary, R., Kumar, P. & Pundir, C. (2019). Fabrication and application of an amperometric lysine biosensor based on covalently immobilized lysine oxidase nanoparticles onto Au electrode. International Journal of Biological Macromolecules,18, 56-59
Patil, B. N. & Taranath, T. C. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology, 5, 197-204.
Pulit-prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543-553.
Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95.
Saha, R., Subramani, K., Raju, S. A. M., Rangaraj, S. & Venkatachalam, R. (2018). Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress in Organic Coatings, 124, 80-91.
Santhoshkumar, J., Kumar, S. V. & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459-465.
Suresh, D., Nethravathi, P. & Rajanaika, H. (2015). Green synthesis of multifunctional zinc oxide nanoparticles using Cassiafistula plant extract and their photodegradative, antioxidant. MaterialsScienceinSemiconductorProcessing, 446-454.
Taran, M., Rad, M. & Alavi, M. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium, 8, 81-83
Thema, F., Manikandan, E., Dhlamini, M. & Maazal, M. (2015). Green synthesis of ZnO . nanoparticles via Agathosma betulina extract. Materials Letters, 54- 63.
Vardan Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G. & Comini, E. (2018). Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 6- 16; doi:10.3390/chemosensors6020016
Vasilache, V., Popa, C., Filote, C., Cretu, M. A. & Benta, M. (2011). Nanoparticles application for improving the food safety and food processing. 7th International Conference on Materials Science and Engineering. 12, 1(31), 77-81
Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L., Zhou, Z., Fan, X., Wang, Y. & Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir, 29, 5573-5580.