سنتز نانوفیتوزوم عصاره موسیر و اثر آن بر باکتری اشریشیاکلی
الموضوعات :حسن الجزائری 1 , آسا ابراهیمی 2
1 - کارشناس ارشد گروه بیوتکنولوژی و به نژادی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه بیوتکنولوژی و به نژادی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: عصاره, موسیر, اشریشیا کُلی, نانوفیتوزوم,
ملخص المقالة :
مقدمه: تحقیقات سالهای اخیر نشان میدهد که ترکیبات فیتوشیمیایی بعنوان ترکیبات آنتی اکسیدان و ضد میکروبی در مواد غذایی حائز اهمیت هستند و بکار گیری فرمولاسیون های مبتنی بر نانو حامل ها در رهایش کنترل شده و حفاظت از این ترکیبات راهکاری موثر برای حفظ این خواص محسوب می شود. در این پژوهش موسیر ایرانی به نام علمی Allium stipitatum Regel بدلیل داشتن مواد فیتوشیمیایی منحصر به فرد این گیاه استفاده شده است. هدف از این تحقیق تهیه و مشخصه یابی ساختاری نانوفیتوزوم سنتز شده حاوی ترکیبات فیتوشیمیایی موسیر و اثرات ضد میکروبی آن در مقایسه با عصاره موسیر می باشد.مواد و روش ها: عصاره آبی الکلی موسیر از گیاه خشک شده بدست آمد. با روش هیدروکسیون لایه نازک ساختار نانوفیتوزوم آن تهیه شد. ساختار نانوفیتوزوم سنتز شده توسط میکروسکوپ SEM و زتاسایزر (DLS) بررسی شد. در نهایت سنجش خواص ضد میکروبی بر روی باکتریهای اشریشیا کلی، مورد بررسی قرار گرفت. سنجش ضد باکتری با کمک آزمونهای MIC و MBC برای نمونه عصاره موسیر و نانوفیتوزوم غلظت های متوالی از نمونه انجام گرفت.یافته ها: بررسی های ساختار نانوفیتوزوم حاکی از شکل کروی و اندازه 5-10 نانومتر نانوفیتوزوم ها بود. پراکندگی نانوفیتوزوم در محیط کلوئیدی به شکل مناسب و شاخص PDI برابر با معادل 0.586 دیده شد. نتیجه آزمون های میکروبی نشان داد که اثر نانوفیتوزوم بر روی باکتری ها قدرت آنتی میکروبیال نانوفیتوزوم به شکل معنی داری نسبت به عصاره موسیر بر روی نمونه های اشریشیا کُلی بیشتر می باشد.نتیجه گیری: این تحقیق اثر نانوفیتوزوم بدست آمده عصاره موسیر بعنوان یک نانوبیوساختار آنتی میکروبیال را به اثبات میرساند.
Afshin, B., Mahdi, Z. & Hamed, H. (2018). Nano-Phytosome: A Developing Platform for Herbal Anti-Cancer Agents in Cancer Therapy. Curr Drug Targets,19(2), 170-180.
Babak, G., Afshin, B. & Hamed, H. (2016). Nano-phytosome as a potential food-grade delivery systems. Food Bioscience,15, 126–135.
Babazadeh, A., Zeinali, M. & Hamishehkar, H. (2018). Nano-Phytosome: a developing platform for herbal anti-cancer agents in cancer therapy, Curr. Drug Targets, 19 (2), 170–180.
Barani, M., Sangiovanni, E., Angarano, M., Rajizadeh, M. A., Mehrabani, M., Piazza, S., Veerabhadrappa, H., Gangadharappa, Pardakhty, A., Mehrbani, M., Dell’Agli M. & Nematollahi, M. H. (2021). Phytosomes as Innovative Delivery Systems for: A Comprehensive Review of Literature. International Journal of Nanomedicine, 16, 6983–7022.
El-Batal, A. I., Elmenshawi, S. F, Ali, A. A. M. & Eldbaiky, E. G. (2018). Preparation and Characterization of SilymarinNanocrystals and Phytosomes with Investigation oftheir Stability using Gamma Irradiation.Indian Journal of Pharmaceutical Education and Research, 52 (4s) [Suppl 2].
El-Fattah, A. I., Fathy, M. M., Ali, Z. Y., El-Garawany, A. E. R. A. & Mohamed, E. K. (2017). Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chemico-Biological Interactions, doi: 10.1016/j.cbi.2017.04.026.
Ezadi, M. R., Salarmoini, M., Afsharmanesh, M., Tavakoli, H. & Bami, M. K. (2019). The effect of hydroalcoholic extract of Allium Hirtifolium and flavophospholipol on performance, meat quality, and immunological responses of broiler chickens. [In Persian]
Faraji, A., Alizadeh, M., Pirsa, S. & Almasi, H. (2018). Optimizing Production of Persian Shallot Essential Oil Emulsion Loaded with Omega 3 Fatty Acids by Nano Polyaniline-Fiber/Gas Chromatography Iranian Journal of Biosystem Engineering, 49(3), 459-476. [In Persian]
Gaikwad, A. R., Ahire, K. D., Gosavi, A. A., Salunkhe, K. S. & Khalkar, A. (2021). Phytosome as a Novel Drug Delivery System for Bioavailability Enhancement of Phytoconstituents and its Applications: A Review. Journal of Drug Delivery & Therapeutics, 11(3), 138-152.
Ghanbarzadeh, B., Babazadeh, A. & Hamishehkar, H. (2016). Nano-phytosome as a potential food-grade delivery system. Food Bioscience, 15, 126–135.
Gokulakannan, R., Yuvashree, M., Badrinathan, S., Rajesh, N. G. & Viswanathan, P. (2017). Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in highfat diet induced dyslipidemia in Wistar rats, Food and Chemical Toxicology. doi: 10.1016/ j.fct.2017.04.019.
Ha, T.V.A., Kim, S., Choi, Y., Kwak, H. S., Lee, S. J., Wen, J., Ko, S. & Oey, I. (2015). Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chemistry, 178, 115–121.
Hasssanzadeh, H., Alizadeh, M. & Bari, M. R. ( 2018 ). Formulation of garlic oil-in-water nanoemulsion: antimicrobial and physicochemical aspects. IET Nanobiotechnology, 12(5), 647-652.
Hooresfand, Z., Ghanbarzadeh, S. & Hamishehkar, H. (2015). Preparation and Characterization of Rutin-loaded Nanophytosomes. http://journals.tbzmed.ac.ir/PHARM Pharmaceutical Sciences. (Suppl 1), doi: 10.15171/PS.2015.29
Khidir, A. M. H. & Mujtaba, M. D. A. (2019). Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205. doi: 10.3934/agrfood.2019.1.194
Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., Nobbmann, U., Sayre, P. & Rumble, J. (2016). Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 3 (5), 953965.
Maryam, N., Babak, G., Hossein, S. K., Mahdi, Z. & Hamed, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications 30, 100176.
Maryana, W., Rachmawati, H. & Mudhakir, D. (2016). Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery, Materialstoday, 3 (3), 855–866.
Mazumder, A., Dwivedi, A., Du Preez, J. L. & Du Plessis, J. (2016). In vitro wound healing and cytotoxic effects of sinigrinphytosome complex. International Journal of Pharmaceutics. 283-293.
Mbah, C. C. & Attama, A. A. (2018). Vesicular carriers as innovative nanodrug delivery formulations, Organic Materials as Smart Nanocarriers for Drug Delivery, Elsevier, pp. 519–559.
Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. & McClements, D. J. (2016). Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 194, 410–415.
Moghimi, R., Ghaderi. L., Rafati, H., Aliahmadi, A.V. & McClements, D. J. (2015). SuperiorVantibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 139.
Nahr, F. K., Ghanbarzadeh, B., Hamishehkar, H. & Kafil, H.S. (2018). Food grade nanostructured lipid carrier for cardamom essential oil: preparation, characterization and antimicrobial activity. Journal of Functional Foods, 40, 1–8.
Pérez-Córdoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F. & Sobral, P. J. A. (2017). Physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids, https://doi.org/10.1016/j.foodhyd.2017.12.012
Petropoulos, S., Fernandes, A., Barros, L., Ciric, A., Sokovic, M. & Ferreira, I. C. F. (2017). Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, doi: https:// doi.org/10.1016/j.foodchem.2017.10.078
Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T. & Vuong, Q. V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science and Technology, 86, 230–251.
Shariare, M. H., Afnan, K., Iqbal F., Altamimi, M. A., Ahamad, S. R., Aldughaim M. S., Alanazi, F. K. & Kazi, M. (2020). Development and Optimization of Epigallocatechin-3-Gallate (EGCG) Nano Phytosome Using Design of Experiment (DoE) and Their In Vivo Anti-Inflammatory Studies. Molecules, 25, 5453; doi:10.3390/molecules25225453
Sheida, F., Zahra, L. & Nahid, J. (2016). Chemical constituents of Allium stipitatum regel (persian shallot) essential oil. Der Pharmacia Lettre, 8 (1), 175-180.
Sittisart, P., Yossan, S. & Prasertsan, P. (2017). Antifungal property of chili, shallot and garlic extracts against pathogenic fungi, Phomopsis spp., isolated from infected leaves of para rubber (Hevea brasiliensis Muell. Arg.). Agriculture and Natural Resources, 51, 485-491.
Taheri, M., Misaghi, A., Akhoundzade, A., Modaresi, M.H., Gandomi, H., Khosravi, P., Talebi, F. & Heshmati, A. (2016). Effect of garlic (Allium sativum L.) essential oil on growth of E. coli O157:H7 and shiga toxin 2 production. Journal of Veterinary Research, 71(1), 41-47. [In Persian].
Wenli, S., Shahrajabian, M. H. & Cheng, Qi. (2019). The insight and survey on medicinal properties and nutritive components of Shallot. Journal of Medicinal Plants Research, 13 (10), 452-457.
_||_Afshin, B., Mahdi, Z. & Hamed, H. (2018). Nano-Phytosome: A Developing Platform for Herbal Anti-Cancer Agents in Cancer Therapy. Curr Drug Targets,19(2), 170-180.
Babak, G., Afshin, B. & Hamed, H. (2016). Nano-phytosome as a potential food-grade delivery systems. Food Bioscience,15, 126–135.
Babazadeh, A., Zeinali, M. & Hamishehkar, H. (2018). Nano-Phytosome: a developing platform for herbal anti-cancer agents in cancer therapy, Curr. Drug Targets, 19 (2), 170–180.
Barani, M., Sangiovanni, E., Angarano, M., Rajizadeh, M. A., Mehrabani, M., Piazza, S., Veerabhadrappa, H., Gangadharappa, Pardakhty, A., Mehrbani, M., Dell’Agli M. & Nematollahi, M. H. (2021). Phytosomes as Innovative Delivery Systems for: A Comprehensive Review of Literature. International Journal of Nanomedicine, 16, 6983–7022.
El-Batal, A. I., Elmenshawi, S. F, Ali, A. A. M. & Eldbaiky, E. G. (2018). Preparation and Characterization of SilymarinNanocrystals and Phytosomes with Investigation oftheir Stability using Gamma Irradiation.Indian Journal of Pharmaceutical Education and Research, 52 (4s) [Suppl 2].
El-Fattah, A. I., Fathy, M. M., Ali, Z. Y., El-Garawany, A. E. R. A. & Mohamed, E. K. (2017). Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chemico-Biological Interactions, doi: 10.1016/j.cbi.2017.04.026.
Ezadi, M. R., Salarmoini, M., Afsharmanesh, M., Tavakoli, H. & Bami, M. K. (2019). The effect of hydroalcoholic extract of Allium Hirtifolium and flavophospholipol on performance, meat quality, and immunological responses of broiler chickens. [In Persian]
Faraji, A., Alizadeh, M., Pirsa, S. & Almasi, H. (2018). Optimizing Production of Persian Shallot Essential Oil Emulsion Loaded with Omega 3 Fatty Acids by Nano Polyaniline-Fiber/Gas Chromatography Iranian Journal of Biosystem Engineering, 49(3), 459-476. [In Persian]
Gaikwad, A. R., Ahire, K. D., Gosavi, A. A., Salunkhe, K. S. & Khalkar, A. (2021). Phytosome as a Novel Drug Delivery System for Bioavailability Enhancement of Phytoconstituents and its Applications: A Review. Journal of Drug Delivery & Therapeutics, 11(3), 138-152.
Ghanbarzadeh, B., Babazadeh, A. & Hamishehkar, H. (2016). Nano-phytosome as a potential food-grade delivery system. Food Bioscience, 15, 126–135.
Gokulakannan, R., Yuvashree, M., Badrinathan, S., Rajesh, N. G. & Viswanathan, P. (2017). Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in highfat diet induced dyslipidemia in Wistar rats, Food and Chemical Toxicology. doi: 10.1016/ j.fct.2017.04.019.
Ha, T.V.A., Kim, S., Choi, Y., Kwak, H. S., Lee, S. J., Wen, J., Ko, S. & Oey, I. (2015). Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chemistry, 178, 115–121.
Hasssanzadeh, H., Alizadeh, M. & Bari, M. R. ( 2018 ). Formulation of garlic oil-in-water nanoemulsion: antimicrobial and physicochemical aspects. IET Nanobiotechnology, 12(5), 647-652.
Hooresfand, Z., Ghanbarzadeh, S. & Hamishehkar, H. (2015). Preparation and Characterization of Rutin-loaded Nanophytosomes. http://journals.tbzmed.ac.ir/PHARM Pharmaceutical Sciences. (Suppl 1), doi: 10.15171/PS.2015.29
Khidir, A. M. H. & Mujtaba, M. D. A. (2019). Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205. doi: 10.3934/agrfood.2019.1.194
Lowry, G. V., Hill, R. J., Harper, S., Rawle, A. F., Hendren, C. O., Klaessig, F., Nobbmann, U., Sayre, P. & Rumble, J. (2016). Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 3 (5), 953965.
Maryam, N., Babak, G., Hossein, S. K., Mahdi, Z. & Hamed, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications 30, 100176.
Maryana, W., Rachmawati, H. & Mudhakir, D. (2016). Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery, Materialstoday, 3 (3), 855–866.
Mazumder, A., Dwivedi, A., Du Preez, J. L. & Du Plessis, J. (2016). In vitro wound healing and cytotoxic effects of sinigrinphytosome complex. International Journal of Pharmaceutics. 283-293.
Mbah, C. C. & Attama, A. A. (2018). Vesicular carriers as innovative nanodrug delivery formulations, Organic Materials as Smart Nanocarriers for Drug Delivery, Elsevier, pp. 519–559.
Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A. & McClements, D. J. (2016). Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 194, 410–415.
Moghimi, R., Ghaderi. L., Rafati, H., Aliahmadi, A.V. & McClements, D. J. (2015). SuperiorVantibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 139.
Nahr, F. K., Ghanbarzadeh, B., Hamishehkar, H. & Kafil, H.S. (2018). Food grade nanostructured lipid carrier for cardamom essential oil: preparation, characterization and antimicrobial activity. Journal of Functional Foods, 40, 1–8.
Pérez-Córdoba, L. J., Norton, I. T., Batchelor, H. K., Gkatzionis, K., Spyropoulos, F. & Sobral, P. J. A. (2017). Physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids, https://doi.org/10.1016/j.foodhyd.2017.12.012
Petropoulos, S., Fernandes, A., Barros, L., Ciric, A., Sokovic, M. & Ferreira, I. C. F. (2017). Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, doi: https:// doi.org/10.1016/j.foodchem.2017.10.078
Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T. & Vuong, Q. V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science and Technology, 86, 230–251.
Shariare, M. H., Afnan, K., Iqbal F., Altamimi, M. A., Ahamad, S. R., Aldughaim M. S., Alanazi, F. K. & Kazi, M. (2020). Development and Optimization of Epigallocatechin-3-Gallate (EGCG) Nano Phytosome Using Design of Experiment (DoE) and Their In Vivo Anti-Inflammatory Studies. Molecules, 25, 5453; doi:10.3390/molecules25225453
Sheida, F., Zahra, L. & Nahid, J. (2016). Chemical constituents of Allium stipitatum regel (persian shallot) essential oil. Der Pharmacia Lettre, 8 (1), 175-180.
Sittisart, P., Yossan, S. & Prasertsan, P. (2017). Antifungal property of chili, shallot and garlic extracts against pathogenic fungi, Phomopsis spp., isolated from infected leaves of para rubber (Hevea brasiliensis Muell. Arg.). Agriculture and Natural Resources, 51, 485-491.
Taheri, M., Misaghi, A., Akhoundzade, A., Modaresi, M.H., Gandomi, H., Khosravi, P., Talebi, F. & Heshmati, A. (2016). Effect of garlic (Allium sativum L.) essential oil on growth of E. coli O157:H7 and shiga toxin 2 production. Journal of Veterinary Research, 71(1), 41-47. [In Persian].
Wenli, S., Shahrajabian, M. H. & Cheng, Qi. (2019). The insight and survey on medicinal properties and nutritive components of Shallot. Journal of Medicinal Plants Research, 13 (10), 452-457.