Design of Control Charts for Monitoring Logistic Regression Profiles with Estimated Parameters
الموضوعات :Zahra Musavipour 1 , Amirhossein Amiri 2 , Zahra Jalilibal 3
1 - Department of Industrial Engineering, Shahed University, Tehran, Iran
2 - Department of Industrial Engineering, Shahed University, Tehran, Iran
3 - Department of Industrial Engineering, Shahed University, Tehran, Iran
الکلمات المفتاحية: Control Chart, Average run length, Profile monitoring, Logistic regression profiles, Parameters estimation,
ملخص المقالة :
The quality of a process can be described using a regression profile relationship between a response variable and some independent variables. Much research has been done on the response variables with continuous and normal distribution. While, in real situations, when a product is conforming or nonconforming on the product line, the assumption of normality is violated and a logistic regression model is used to characterize binary response variables. Also, in many cases the parameters used to design control charts for monitoring profiles are unknown and estimated by using IC reference data, which adversely influences the efficiency of control charts. In recent years, a few authors have been done on the effect of parameter estimation in monitoring profiles, especially profiles whose response variables do not follow the normal distribution. In this paper, Hotelling’s T2 chart and a multivariate exponentially weighted moving average (MEWMA) chart are used to monitor the logistic regression profile in Phase II with estimated parameters. In addition, two criteria including average of average run length (AARL) and standard deviation of average run length (SDARL) are utilized to appraise the effect of parameters estimation in Phase I on the Phase II performance of designed control charts through simulation runs. The results illustrate that the performance of these charts is significantly affected by the estimated parameters in both IC and OC conditions. Also, two methods are utilized to decrease the effect of parameters estimation which include increasing the number of reference profiles in Phase I and modifying the control limits.
- Aly, A. A., Mahmoud, M. A., & Woodall, W. H. (2015). A comparison of the performance of phase II simple linear profile control charts when parameters are estimated. Communications in Statistics-Simulation and Computation, 44(6): 1432-1440.
- Ahmadi Yazdi, A. & Zeinal Hamadani, A, & Amiri, A. (2019a). Phase II monitoring of multivariate simple linear profiles with estimated parameters. Journal of Industrial Engineering International, 15, 557-570.
- Ahmadi Yazdi, A., Zeinal Hamadani, A., Karimi Gavareshki, M. H., & Amiri, A. (2019b). Phase II monitoring of multivariate profiles with estimated parameters and optimal phase I subgroups. Published online in Communications in Statistics-Simulation and Computation, doi: 10.1080/03610918.2019.1615626.
- Ahmadi Yazdi, A., Zeinal Hamadani, A., & Amiri, A. (2020). Addressing the effect of parameter estimation on phase II monitoring of multivariate multiple linear profiles via a new cluster-based approach. Communication in Statistics-Theory and Methods, 49(17), 4117-4132.
- Amiri, A., Eyvazian, M., Zou, C., and Noorossana, R. (2012). A parameters reduction method for monitoring multiple linear regression profiles. The International Journal of Advanced Manufacturing Technology, 58(5- 8): 621-629
- Amiri, A., Koosha, M. and Azhdari, A. (2011). Profile monitoring for poisson response. Proceedings of IEEM conference, IEEE, Singapore.
- Amiri, A., Koosha, M. and Azhdari, A. (2012). T2 based methods for monitoring gamma profiles. Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management, Istanbul, Turkey.
- Amiri, A., Koosha, M., Azhdari, A., & Wang, G. (2015). Phase I monitoring of generalized linear model-based regression profiles. Journal of Statistical Computation and Simulation, 85(14): 2839-2859.
- Amiri, A., Zou, C., & Doroudyan, M. H. (2014). Monitoring correlated profile and multivariate quality characteristics. Quality and Reliability Engineering International, 30(1): 133-142.
- Amiri, A., Sogandi, F., & Ayoubi, M. (2018). Simultaneous monitoring of correlated multivariate
linear and GLM regression profiles in Phase II. Quality Technology & Quantitative Management, 15(4), 435- 458.
- Bandara, K., Abdel‐Salam, A. S. G., & Birch, J. B. (2020). Model robust profile monitoring for the
generalized linear mixed model for Phase I analysis. Applied Stochastic Models in Business and
Industry, 36(6), 1037-1059.
- Chakraborti, S. (2000). Run length, average run length and false alarm rate of Shewhart X-bar chart: exact derivations by conditioning. Communications in Statistics- Simulation and Computation, 29(1): 61-81.
- Chen, G. (1997). The mean and standard deviation of the run length distribution of X2 charts when control limits are estimated. Statistica Sinica, 23(4): 789-798.
- Chen, Y., Birch, J. B., & Woodall, W. H. (2016). Effect of phase I estimation on phase II control chart performance with profile data. Quality and Reliability Engineering International, 32(1): 79-87.
- Cheng, T. C., & Yang, S. F. (2018). Monitoring profile based on a linear regression model with correlated errors. Quality Technology & Quantitative Management, 15(3), 393-412.
- Davidson, J., Summerfelt, S. (2004) Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular ‘Cornell-type’ dual-drain tanks, Aquacultural Engineering, 32(1), 245-271.
- Ding, Y., Zeng L., and Zhou, S. (2006). Phase I analysis for monitoring nonlinear profiles in manufacturing processes. Journal of Quality Technology, 38: 199–216.
- Eyvazian M., Noorossana R., Saghaei A. and Amiri A. (2011). Phase II monitoring of multivariate multiple linear regression profiles. Quality and Reliability Engineering International, 27(3): 281-296.
- Hakimi, A., Amiri, A., & Kamranrad, R. (2017). Robust approaches for monitoring logistic regression profiles under outliers. International Journal of Quality & Reliability Management, 34(4): 494-507.
- Hu, X., & Castagliola, P. (2017). Guaranteed conditional design of the median chart with estimated parameters. Quality and Reliability Engineering International, 33(8): 1873-1884.
- Izadbakhsh, H., Noorossana, R., Zarinbal, M., Zarinba, l A., Safaian, M. and Chegeni, M. (2011). An EWMA– based method for monitoring polytomous logistic profiles. Proceeding of the 2011 International Conference on Industrial Engineering and Engineering Management (IEEM).
- Izadbakhsh, H., Noorossana, R., & Niaki, S. T. A. (2018). Monitoring multinomial logistic profiles in Phase I using log-linear models. International Journal of Quality & Reliability Management. 35(3), 678-689.
- Jensen, W. A. and Birch, J. B. (2009). Profile monitoring via nonlinear mixed models. Journal of Quality Technology, 41: 18-34.
- Jones, L. A., Champ, C. W., & Rigdon, S. E. (2001). The performance of exponentially weighted moving average charts with estimated parameters. Technometrics, 43(2): 156-167
- Jones, L. A., Champ, C. W., and Rigdon, S. E. (2004). The run length distribution of the CUSUM with estimated parameters. Journal of Quality Technology, 36(1): 95-108.
- Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of Quality Technology, 32(4): 418-426.
- Kinat, S., Amin, M., & Mahmood, T. (2020). GLM‐ based control charts for the inverse Gaussian distributed response variable. Quality and Reliability Engineering International, 36(2), 765-783.
- Kazemzadeh, R. B., Noorossana R. and Amiri A. (2008). Performance evaluation of control charts for detecting outliers in phase I monitoring of polynomial profiles. Proceedings of the 9th Iranian Statistical Conference. Isfahan, Iran, August 20-22.
- Kazemzadeh, R. B., Noorossana, R. and Amiri, A. (2008). Phase I monitoring of polynomial profiles. Communications in Statistics, Theory and Methods, 37: 1671-1686.
- Kazemzadeh, R. B., Noorossana, R., and Amiri, A. (2009). Monitoring polynomial profiles in quality control applications. The International Journal of Advanced Manufacturing Technology, 42(7-8): 703- 712.
- Kim, K., Mahmoud, M. A., Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology 35: 317–328.
- Koosha, M., and A. Amiri. (2013). Generalized linear mixed model for monitoring autocorrelated logistic regression profiles. The International Journal of Advanced Manufacturing Technology, 64 (1–4): 487– 95.
- Li, J., Zou, C., Wang, Z., Huwang, L. (2013). A multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology. 45: 149-165.
- Mahmoud, M. A. (2012). The performance of phase II simple linear profile approaches when parameters are estimated. Communications in Statistics-Simulation and Computation, 41(10): 1816-1833.
- Mahmoud, M. A., & Maravelakis, P. E. (2010). The performance of the MEWMA control chart when parameters are estimated. Communications in StatisticsSimulation and Computation, 39(9): 1803-1817.
- Mahmoud, M. A., & Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration applications. Technometrics, 46(4): 380-391.
- Mahmoud, M. A., Morgan, J. P., & Woodall, W. H. (2010). The monitoring of simple linear regression profiles with two observations per sample. Journal of Applied Statistics, 37(8): 1249-1263.
- Mammadova, U., & Özkale, M. R. (2021). Profile monitoring for count data using poisson and conway– maxwell–poisson regression-based control charts under multicollinearity problem. Journal of Computational and Applied Mathematics, 388, 113275.
- Maleki, M. R., A. Amiri, and A. R. Taheriyoun. (2017). Phase II monitoring of binary profiles in the presence of within-profile autocorrelation based on Markov model. Communications in Statistics-Simulation and Computation, 46 (10):7710–32.
- Maleki, M. R., Amiri, A., & Taheriyoun, A. R. (2018). Identifying the time of step change and drift in phase II monitoring of autocorrelated logistic regression profiles. Scientia Iranica, 25(6), 3654-3666.
- Maleki, M. R., Castagliola, P., Amiri, A., & Khoo, M. B. (2019). The effect of parameter estimation on phase II monitoring of poisson regression profiles. Communications in Statistics-Simulation and Computation, 48(7), 1964-1978.
- Maravelakis, P. E., & Castagliola, P. (2009). An EWMA chart for monitoring the process standard deviation when parameters are estimated. Computational Statistics & Data Analysis, 53(7): 2653-2664.
- Moheghi, H. R., Noorossana, R., & Ahmadi, O. (2021). GLM profile monitoring using robust estimators. Quality and Reliability Engineering International, 37(2), 664-680.
- Montgomery, D. C. (2005). Introduction to Statistical Quality Control, 5th edition, John Wiley & Sons.
- Noorossana, R. and Izadbakhsh, H. (2013). Profile monitoring for multinomial responses. International Journal of Industrial Engineering & Production Management, 23(4): 417-429.
- Noorossana, R., Aminmadani, M., & Saghaei, A. (2016). Effect of phase I estimation error on the monitoring of simple linear profiles in phase II. The International Journal of Advanced Manufacturing Technology, 84(5- 8): 873-884.
- Noorossana, R., Aminnayeri. M. and Izadbakhsh, H. (2013). Statistical monitoring of polytomous logistic profiles in phase II. Scientia Iranica, 20(3): 958-966.
- Noorossana, R., Eyvazian M., Amiri A. and Mahmoud M.A. (2010). Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application. Quality and Reliability Engineering International, 26(3): 291-303.
- Paynabar, K., Jin, J. and Yeh, A. B. (2012). Phase I risk adjusted control charts for monitoring surgical performance by considering categorical covariates. Journal of Quality Technology, 44(1): 39-53.
- Piri, S., Abdel-Salam, A. S. G., & Boone, E. L. (2021). A wavelet approach for profile monitoring of Poisson distribution with application. Communications in Statistics-Simulation and Computation, 50(2), 525-536.
- Saleh, N. A., Mahmoud, M. A., Jones-Farmer, L. A., Zwetsloot, I. N. E. Z., & Woodall, W. H. (2015). Another look at the EWMA control chart with estimated parameters. Journal of Quality Technology, 47(4): 363- 382.
- Shang, Y., Tsung, F. and Zou, C. (2011). Phase-II profile monitoring with binary data and random predictors. Journal of Quality Technology, 43:196-208.
- Shang, Y., Tsung, F., & Zou, C. (2011). Profile monitoring with binary data and random predictors. Journal of Quality Technology, 43(3), 196-208.
- Soleymanian M.E., Khedmati M. and Mahlooji H. (2013). Phase II monitoring of binary response profiles. Scientia Iranica, 20(6): 2238-2246.
- Testik, M. C. (2007). Conditional and marginal performance of the Poisson CUSUM control chart with parameter estimation. International Journal of Production Research, 45(23): 5621-5638.
- Williams, J. D., Woodall W.H. and Birch, J. B. (2007). Statistical Monitoring of Nonlinear Product and Process Quality Profiles. Quality and Reliability Engineering International, 23: 925-941.
- Yeh, A. B., Huwang, L., & Li, Y. M. (2009). Profile monitoring for a binary response. IIE Transactions, 41(11): 931-941.
- Zand, A., Yazdanshenas, N., & Amiri, A. (2013). Change point estimation in phase I monitoring of logistic regression profile. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2301-2311.
- Zhang, H. and Albin, S. (2009). Detecting outliers in complex profiles using χ2 control chart method. IIE Transactions, 41(4): 335-345.
- Zhang, J., Li, Z., & Wang, Z. (2009). Control chart based on likelihood ratio for monitoring linear profiles. Computational statistics & data analysis, 53(4): 1440-1448.
- Zhang, M., Peng, Y., Schuh, A., Megahed, F. M., & Woodall, W. H. (2013). Geometric charts with estimated control limits. Quality and Reliability Engineering International, 29(2): 209- 223.
- Zou, C., Tsung, F. and Wang, Z. (2008). Monitoring profiles based on nonparametric regression methods, Technometrics, 50(4): 512-526.
- Zou, C., Tsung, F., & Wang, Z. (2007). Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. Technometrics, 49: 395–408.
- Zwetsloot, I. M., & Woodall, W. H. (2017). A head-tohead comparative study of the conditional performance of control charts based on estimated parameters. Quality Engineering, 29(2): 244-253.