Investigation of chemical characteristics of Eshnan (Seidlitzia rosmarinus Bunge ex Boiss) and quantitative determination of saponin ginsenosides by high-performance liquid chromatography
Subject Areas : Natural Products: Isolation and CharacterizationMahnaz Davabi 1 , Maryam Kolahi 2 * , Roya Azadi 3 , Nahid Pourreza 4
1 - Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
2 - Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
3 - Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
4 - Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
Keywords: Eshnan (<i>Seidlitzia rosmarinus</i> Bunge ex Boiss), Saponin ginsenosides, Natural surfactant, HPLC, Antioxidant,
Abstract :
Eshnan (Seidlitzia rosmarinus Bunge ex Boiss), a salt-tolerant and drought-resistant plant, is often found in salty desert areas. In the present report, Eshnan was subjected to extraction using methanol, ethanol, and water utilizing a Soxhlet extractor. A total of 51 compounds were identified in the plant inclusive of secondary metabolites such as phenols, polyphenols, phytosterol, amino acid, fatty acid, etc. utilizing GC/MS analysis. The methanolic extract had the highest phenolic content, whereas ethanolic extract had the highest antioxidant activity. Aqueous extract contained the highest levels of saponin, as well. CTAB represented a higher foaming capacity as compared to the plant extracts. HPLC analysis of the plant extract confirmed the presence of the saponin ginsenoside Rb1 for the first time. The results showed a rich source of saponins, polyphenols, and fatty acids in Eshnan. Due to the significant quantity of saponins within the plant, it can be used as an alternative natural surfactant to chemical surfactants that are currently utilized in industry.
Aghdam, S.K.Y., Moslemizadeh, A., Madani, M., Ghasemi, M., Shahbazi, K., Moraveji, M. K., 2019. Mechanistic assessment of Seidlitzia rosmarinus-derived surfactant for restraining shale hydration: A comprehensive experimental investigation. Chem. Eng. Res. Des. 147, 570-578.
Ahmadi, M., Fata, A., Khamesipour, A., Rakhshandeh, H., Miramin Mohammadi, A., Salehi, G., Monavari, H., 2014. The efficacy of hydro alcoholic extract of Seidlitzia rosmarinus on experimental zoonotic cutaneous leishmaniasis lesions in murine model. Avicenna J. Med. 4(6), 385-391.
Azizian-Shermeh, O., Taherizadeh, M., 2014. Phytochemical investigation, antioxidant and antimicrobial activities of Seidlitzia rosmarinus L. from Sistan and Baluchestan. Iran. Chem. Congress. 17-97.
Bashiri Rezaie, A., Montazer, M., Rad, M.M., 2017. Biosynthesis of nano cupric oxide on cotton using Seidlitzia rosmarinus ashes utilizing bio, photo, acid sensing and leaching properties. Car. Polym. 177, 1-12.
Bianco, A., Venditti, A., Foddai, S., Toniolo, C., Nicoletti, M., 2014. A new problem. Contamination of botanicals by phthalates. Rapid detection tests. Nat. Prod. Res. 28(2),134-137.
Bryan, H.D. 1955. Differential staining with a mixture of safranin and fast green FCF. Stain. Technol. 30, 25-31.
Cheok, C.Y., Salman, H.A.K., Sulaiman, R., 2014. Extraction and quantification of saponins: A review Int. Food Res. J. 59, 16-40.
Corbit, R.M., Ferreira, J.F., Ebbs, S.D., Murphy, L.L., 2005. Simplified extraction of ginsenosides from American ginseng (Panax quinquefolius L.) For high-performance liquid chromatography−ultraviolet analysis. J. Agric. Food Chem. 53(26), 9867-9873.
Crawford, C., Zirwas, M.J., 2014. Laundry detergents and skin irritancy-A comprehensive review. Skinmed 12(1), 23-31.
De, S., Malik, S., Ghosh, A., Saha, R., Saha, B., 2015. A review on natural surfactants. RSC Adv. 5(81), 65757-65767.
Deymeh, H., Shadizadeh, S., Motafakkerfard, R., 2012. Experimental investigation of Seidlitzia rosmarinus effect on oil-water interfacial tension: Usable for chemical enhanced oil recovery. Sci. Iran. 19(6), 1661-1664.
Dinarvand, M., Keneshloo, H., Fayaz, M., 2018. Vegetation of dust sources in Khuzestan Province. Iran Nature 3(3), 32-42.
Farahnejad, Z., Izadpanah, M., Ghasemian, A., Nojoomi., F., 2017. Antibacterial effect of Seidlitzia rosmarinus extract and silver nanoparticles on Staphylococcus aureus and Klebsiella pneumoniae isolated from urinary tract infections. Ann. Med. Health Sci. Res. 15(3), 1-4.
Gao, Y., Zang, P., Hao, J., Li, P., Li, X., Zhang, P.J., Zhang, L., 2012. The evaluation of contents of nine ginsenoside monomers in four commercial ginseng by reverse phase high performance liquid chromatography (RP-HPLC). J. Med. Plant Res. 6, 3030-3036.
Goli, S.A.H., Mokhtari, F., Rahimmalek, M., 2012. Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. J. Agric. Sci. 4(10), 175-181.
Hadi, M.R., 2009. Biotechnological potentials of Seidlitzia rosmarinus: A mini review. Afr. J. Biotechnol. 8(11), 2429-2431.
Hassan, A.R., El-Kousy, S.M., El-Toumy, S.A., Frydenvang, K., Tung, T.T., Olsen, J., Christensen, S.B., 2017. Metformin, an anthropogenic contaminant of Seidlitzia rosmarinus collected in a desert region near the Gulf of Aqaba, Sinai Peninsula. J. Nat. Prod. 80(10), 2830-2834.
Hossain, M.A., AL-Raqmi, K.A.S., AL-Mijizy, Z.H., Weli, A.M., Al-Riyami, Q., 2013. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 3(9), 705-710.
İbanoğlu, E. and İbanoğlu, Ş., 2000. Foaming behavior of liquor ice (Glycyrrhiza glabra) extract. Food Chem. 70(3), 333-336.
Jeong, G.T.A., Park, D.H., 2006. Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system. Appl. Biochem. Biotechnol. 130(1-3), 436-446.
Ji, Q.C., Harkey, M.R., Henderson, G.L., Eric Gershwin, M., Stern, J.S., Hackman, R.M., 2001. Quantitative determination of ginsenosides by high‐performance liquid chromatography‐tandem mass spectrometry. Phytochem. Anal. 12(5), 320-326.
Kumaran, A., Karunakaran, R.J., 2007. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Sci Technol. 40(2), 344-352.
Kwon, J.H., Belanger, J.M., Pare, J.J., Yaylayan, V.A., 2003. Application of the microwave-assisted process (MAP™) to the fast extraction of ginseng saponins. Food Res. Int. 36(5), 491-498.
Lalrinzuali, K., Vabeiryureilai, M., Jagetia, G.C., 2015. Phytochemical and TLC profiling of Oroxylum indicum and Milletia pachycarpa. J. Plant. Biochem. Phys. 3(3), 1-8.
Mahdavi, M.J., Ranjbar, A., Zandi Esfahan, E., Dehghani Bidgoli, R., 2018. Potential of halophytes as source of edible oil. Iranian J. Range Des. Res. 24(4), 920-927.
Mirheidari, F., Khadivi, A., 2022. Multivariate analysis of eshnan (Seidlitzia rosmarinus Boiss.) based on morphological characterizations. Food Sci. Nutr. 10(11), 3662–3671.
Mohammadhosseini, M., Frezza, C., Venditti, A., Mahdavi, B. 2022. An overview of the genus Aloysia Paláu (Verbenaceae): Essential oil composition, ethnobotany and biological activities. Nat. Prod. Res. 36(19), 5091-5107.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S.D., 2021. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18, e2100317.
Norhaiza, M., Maziah, M., Hakiman, M., 2009. Antioxidative properties of leaf extracts of a popular Malaysian herb, Labisia pumila. J. Med. Plant Res. 3(4), 217-223.
Redfern, J., Kinninmonth, M., Burdass, D., Verran, J., 2014. Using Soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. J. Microbiol. Biol. Educ. 15(1), 45-46.
Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B.S., Babalghith, A.O., Alshahrani, M.Y., Islam, S., Islam, M.R., 2022. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed. Res. Int. 6 (2022), 5445291.
Tanaka, N., Kashiwada, Y., 2021. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies. J. Nat. Med. 75(4), 762-783.
Thagriki, D., Ray, U., 2022. An overview of traditional medicinal plants as dengue virus inhibitors. Trends Phytochem. Res. 6(2), 116-136.
Tiwari, P., Kumar, B., Kaur, M., Kaur, G., Kaur, H., 2011. Phytochemical screening and extraction: A review. Int. Pharm. Sci. 1(1), 98-106.
Towhidi, A., Zhandi, M., 2007. Chemical composition, in vitro digestibility and palatability of nine plant species for dromedary camels in the province of Semnan, Iran. Egypt. J. Biol. 9(1), 47-52.
Venditti, A., 2020. What is and what should never be: Artifacts, improbable phytochemicals, contaminants and natural products. Nat. Prod. Res. 34(7), 1014-1031.
Wan, J.B., Lai, C.M., Li, S.P., Lee, M.Y., Kong, L.Y., Wang, Y.T., 2006. Simultaneous determination of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction. J. Pharm. Biomed. Anal. 41(1), 274-279.
Wan, J.B., Li, S.P., Chen, J.M., Wang, Y.T., 2007. Chemical characteristics of three medicinal plants of the Panax genus determined by HPLC‐ELSD. J. Sep. Sci. 30(6), 825-832.
Wang, G.X., Zhou, Z., Jiang, D.X., Han, J., Wang, J.F., Zhao, L.W., Li, J., 2010. In vivo anthelmintic activity of five alkaloids from Macleaya microcarpa (Maxim) Fedde against Dactylogyrus intermedius in Carassius auratus. Vet. Parasitol. 171(3-4), 305-313.
Wong-Paz, J.E., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Carrillo-Inungaray, M.L., López, L.I., Nevárez-Moorillón, G.V., et al., 2015. Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region. Asian Pac. J. Trop. Med. 8(2), 104-111.
Zhishen, J., Mengcheng, T., Jianming, W., 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64(4), 555-559.
Zolfaghari, B., Jafarian, A., Rezaei, M., 2018. Evaluation of cytotoxic effect of different extracts of Seidlitzia rosmarinus on HeLa and HepG2 cell lines. Adv. Biomed. Res. 7(132), 1-5.
Zolfaghari, B., Mazaheri, M., Dinani, M.S., 2017. Isolation and identification of cinnamic acid derivatives from the aerial parts of Seidlitzia rosmarinus Ehrenb. Ex Boiss. J. Rep. Pharm. Sci. 6(1), 77-83.