غنیسازی کره با نانوذرات الکترواسپری شده پلیکاپرولاکتون بارگذاری شده با ویتامین D3
محورهای موضوعی : نانو تکنولوژی ، نانو بیوتکنولوژی در صنایع غذایی و کشاورزیسهیلا راستان مستعلی بگلو 1 * , لیدا شاهسونی 2 , شادی مهدیخانی 3
1 - گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: ویتامین D3, پلیکاپرولاکتون, کره, نانوذرات,
چکیده مقاله :
کره به دلیل طعم ویژه و لذیذش از محبوبترین محصولات لبنی است لیکن به لحاظ وجود ویتامینهایی نظیر ویتامین D3 منبع خوبی به شمار نمیرود و بهکارگیری این ویتامین در فرمولاسیون آن میتواند به خصوصیات زیستفعال این محصول بیفزاید. پژوهش حاضر با هدف انکپسولاسیون ویتامین D3 در ساختار نانوذرات الکترواسپری بر پایه پلیکاپرولاکتون و سپس بهکارگیری آن در فرمولاسیون کره انجام شد. بدین منظور نانوذرات الکترواسپری شده پلیکاپرولاکتون حاوی ویتامین D3 با سطوح 5، 10 و 15درصد(وزنی/وزنی) انکپسوله تولید و آزمون FTIR و کارآیی انکپسولاسیون روی نانوذرات تشکیل شده انجام و نمونهای که دارای کارایی انکپسولاسیون بالاتر بود جهت افزودن به کره استفاده شد. نتایج آزمون FTIR نشان داد ویتامین D3 بهطور موفقیتآمیزی در ساختار نانوذرات الکترواسپری شده پلیکاپرولاکتون به دام افتاده و با بهکارگیری 10% ویتامین D3 در ساختار نانوذرات بالاترین راندمان انکپسولاسیون حاصل گردید و سپس خصوصیات فیزیکوشیمیایی، رنگی و حسی نمونهها در طی 3 ماه نگهداری با نمونه شاهد مقایسه شدند. نتایج نشان داد استفاده از نانوذرات الکترواسپری شده پلیکاپرولاکتون حاوی ویتامین D3 و افزایش سطح بهکارگیری آن در فرمولاسیون کره موجب کاهش اندیس پراکسید، عدد اسیدی و اندیس تیوباربیتوریک اسید در طی دوره نگهداری شد و نمونه حاوی 5% ویتامین D3 موجب عدم ایجاد تفاوت معنیداری خصوصیات رنگی(L*، a و b) و نیز عدمتغییر خصوصیات حسی در مقایسه با نمونه شاهد شد. بهطورکلی میتوان نتیجه گرفت که کره حاوی 5% نانوذرات الکترواسپری شده پلیکاپرولاکتون حاوی ویتامین D3 دارای خصوصیات فیزیکوشیمیایی، رنگی و حسی مطلوب و بهعنوان نمونه برتر انتخاب میشود.
Butter is one of the most popular dairy products due to its special and delicious taste, but it is not considered a good source of vitamins such as vitamin D3 and using this vitamin in its formulation can add to the bioactive properties of this product. The present study aimed to encapsulate vitamin D3 in the structure of electrospray nanoparticles based on poly-caprolactone and then use it in butter formulation. Electrosprayed polycaprolactone nanoparticles containing vitamin D3 with levels of 5, 10, and 15(w/w) were produced and encapsulated and FTIR test and encapsulation efficiency were performed on the formed nanoparticles. The sample that had higher encapsulation efficiency was added to the butter. FTIR test results showed that vitamin D3 was successfully trapped in the structure of electrosprayed poly-caprolactone nanoparticles. By using 10% vitamin D3 in the nanoparticle structure, the highest encapsulation efficiency was achieved. The physicochemical, color, and sensory properties of the samples were compared with the control sample during 3 months of storage. The results showed that the use of nanoparticles containing vitamin D3 and increasing its application level in butter formulation resulted in a decrease in peroxide value, acid value, thiobarbituric acid value during storage. The sample containing 5% vitamin D3 did not cause any significant difference in color characteristics and did not change sensory characteristics compared to the control sample. It can be concluded that butter containing 5% electrosprayed polycaprolactone nanoparticles containing vitamin D3 has desirable physicochemical, color, and sensory properties and is selected as the superior sample.
References
1. Salehin MN, Khan SI, Kabir MS, Kumar K, Montaha S, Arefuzzaman M, Uddin MB, Ahmed M. Assessment of oxidative and shelf life stability of lycopene enriched butter during storage. Food Chemistry Advances. 2025:101003.
2. Ma Z, & Boye, J. I. Advances in the design and production of reduced-fat and reduced-cholesterol salad dressing and mayonnaise: a review. Food and Bioprocess Technology. 2013; 6(3), 648-670.
3. Holick M. F. The one-hundred-year anniversary of the discovery of the sunshine vitamin D3: historical, personal experience and evidence-based perspectives. Nutrients. 2023; 15(3), 593.
4. Khan W. A, Butt M S, Pasha I, Jamil A. Microencapsulation of vitamin D in protein matrices: In vitro release and storage stability. Journal of food measurement and characterization. 2020; 14, 1172-1182.
5. Winuprasith T, Khomein P, Mitbumrung W, Suphantharika M, Nitithamyong A, McClements DJ. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food hydrocolloids. 2018; 83:153-64.
6. Ghorani B, Tucker N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids. 2015; 51, 227-240.
7. Hernández-Rodríguez L, Lobato-Calleros C, Pimentel-González D. J, Vernon-Carter E. J. Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids. 2014; 36, 181-188.
8. Pérez-Masiá, R, López-Nicolás, R, Periago M. J, Ros G, Lagaron J. M, López-Rubio A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry. 2015; 168, 124-133.
9. Alehosseini A, Ghorani, B, Sarabi-Jamab, M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Critical reviews in food science and nutrition. 2018; 58(14), 2346-2363.
10. Prieto C, Calvo L. Supercritical fluid extraction of emulsions to nanoencapsulate vitamin E in polycaprolactone. The Journal of Supercritical Fluids, 2017; 119, 274-282.
11. Wang J, Jansen J. A, Yang F. Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review. Frontiers in Chemistry. 2019; 7, 258.
12. Rezaeinia H, Ghorani B, Emadzadeh B, Tucker N. Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modelling the kinetics of release. Food hydrocolloids. 2019; 93, 374-385.
13. Rezaeinia H, Ghorani B, Emadzadeh B, Mohebbi M. Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. Materials Science and Engineering. 2020; C, 111115.
14. Azizkhani, M. Zandi, P. Gaini, A. Safafar, H. Akhavan Attar, Z. (2006). The effect of natural antioxidant mixtures on the oxidative stability of margarine. Iranian Quarterly Journal of Nutritional Sciences and Food Industry.2006: 2: 44-35.
15. National Standards Organization of Iran (2017), First Edition. Vegetable and Animal Oils and Fats: Measurement of Peroxide Content by Iodometry - Determination of Endpoint by Visual Method. Publications of the Iranian Standards and Industrial Research Organization. National Standard Number 4179.
16. National Standards Organization of Iran (1400), First Edition. Vegetable and Animal Oils and Fats - Measurement of Acid Number and Acidity. Publications of the Iranian Standards and Industrial Research Organization. National Standard Number 4178.
17. Ehsani A, Hashemi M, Jazani N. H, Aliakbarlu J, Shokri S, Naghibi S. S. Effect of Echinophora platyloba DC. essential oil and lycopene on the stability of pasteurized cream obtained from cow milk. In Veterinary Research Forum. 2016; Vol. 7, No. 2, p. 139. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
18. Abid Y, Azabou S, Jridi M, Khemakhem I, Bouaziz M, Attia H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chemistry,2017; 233: 476-482.
19. Lawless H. T, Heymann H. Sensory evaluation of food: principles and practices. 2010 Springer Science & Business Media.
20. Janković B, Papović S, Vraneš M, Knežević T, Pržulj S, Zeljković S, Jelić D. Biomineral nanocomposite scaffold (CaCO3/PVA based) carrier for improved stability of vitamin D3: characterization analysis and material properties. Journal of Materials Science. 2023; 58(15), 6580-6601.
21. Al-Bishari A. M, Al-Shaaobi B. A, Al-Bishari A. A, Al-Baadani M. A, Yu L, Shen J, Gao P. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold. Frontiers in bioengineering and biotechnology. 2022; 10, 975431.
22. Wsoo M. A, Abd Razak S. I, Bohari S. P. M, Shahir S, Salihu R, Kadir M. R. A, & Nayan, N. H. M. Vitamin D3-loaded electrospun cellulose acetate/polycaprolactone nanofibers: Characterization, in-vitro drug release and cytotoxicity studies. International journal of biological macromolecules. 2021; 181, 82-98.
23. Guler E, Baripoglu Y. E, Alenezi H, Arikan A, Babazade R, Unal, S., Cam M. E. Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway. International Journal of Biological Macromolecules. 2021; 190, 244-258.
24. Heydari-Majd M, Rezaeinia H, Shadan M. R, Ghorani B, Tucker N. Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. Journal of Drug Delivery Science and Technology. 2019; 54, 101290.
25. Aliabbasi N, Mehrabi S, Kheirandish M, Gashtasbi S, Mokhtarian M, Hosseini-Isfahani M., & Rezaeinia H. The novel nano-electrospray delivery of curcumin via ultrasound assisted Balangu (Lallemantia royleana) hydrocolloid-chickpea protein interaction. Food Chemistry. 2025; 144388.
26. Mokhtari, Z., Hekmatdoost, A., & Nourian, M. Antioxidant efficacy of vitamin D. Journal of Parathyroid Disease, 2016; 5(1), 11-16.
27. Leal L. K. A. M, Lima L. A, de Aquino P. E. A, de Sousa J. A. C, Gadelha C. V. J., Calou, I. B. F, de Barros Viana, G. S. Vitamin D (VD3) antioxidative and anti-inflammatory activities: Peripheral and central effects. European journal of pharmacology. 2020; 879, 173099.
28. Shavisi N. Improving the oxidative stability of butter oil with nanoencapsulated Ferulago angulata essential oil during accelerated shelf-life storage. Journal of Food Science and Technology. 2024; 61(11), 2100-2110.
29. Kreivaitis R, Gumbytė M, Kazancev K, Padgurskas J, Makarevičienė, V. A comparison of pure and natural antioxidant modified rapeseed oil storage properties. Industrial Crops and Products. 2013; 43, 511-516.
30. Aidli-Ouadah A, Rezig L, Chougui N, Beder-Belkhiri W, Hadjal S, Zeroual B, Idoui T. Effect of pomegranate (Punica granatum L.) peel extract on the oxidative stability of soybean oil and margarine. Journal of Food Measurement and Characterization.2025; 1-15.
31. Akça A. E, Kandil M, Özcan M. M. Uses of margarines, consumption rates of margarine, oxidative deterioration and storage conditions, the relationship between spices and antioxidants-A Review. Journal of Agroalimentary Processes & Technologies. 2022; 28(4).
32. Guenaoui, N., Ouchemoukh, S., Amessis-Ouchemoukh, N., Ayad, R., Puşcaş, A., Zeroual, B., Mureşan, V. (2024). Physico-chemical properties and antioxidant activity of five Algerian honeys and margarines formulated with honey as antioxidant and preservative. Journal of Food Safety and Food Quality-Archiv für Lebensmittelhygiene, 75(6), 167-178.
33. Sadou D, Amessis‐Ouchemoukh N, Ouchemoukh S, Ayad R, Guenaoui N, Otmani, A., & Madani, K. Elaboration of enriched margarine with lentisk oil and honey: Formulation, characterization, and monitoring of oxidative stability. European Journal of Lipid Science and Technology. 2023; 125(11), 2300081.
34. Pădureţ, S. The quantification of fatty acids, color, and textural properties of locally produced bakery margarine. Applied Sciences 2022; 12(3), 1731.
35. Fallahasgari M, Barzegar F, Abolghasem D, Nayebzadeh K. An overview focusing on modification of margarine rheological and textural properties for improving physical quality. European Food Research and Technology. 2023; 249(9), 2227-2240.
36. Jassim L, Mahmood K. Study of some physicochemical, microbial and sensory properties of low-fat butter produced by titanium dioxide (TiO2) nano particles. Eurasian Chemical Communications. 2022; 4(3), 241-55.