ترکیب رویکرد AHP با GIS برای انتخاب محل دفن نخالههای ساختمانی و تخریب (مطالعه موردی: شهرستان هفتکل، استان خوزستان)
محورهای موضوعی : جغرافیا و برنامه ریزی شهریمحمدصادق زنگنه 1 * , دکتر نرگس منجزی 2 , دکتر آزیتا زنگنه 3 , مهسا عبدالهی 4
1 - کارشناسی ارشد GIS، سازمان نظام مهندسی کشاورزی و منابع طبیعی استان خوزستان، ایران
2 - استادیار، گروه علوم تجربی، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران.
3 - دکترای تخصصی، دانشگاه فرهنگیان خوزستان، اهواز، ایران
4 - دانشجوی دکترای زمین شناسی ساختمانی و تکتونیک، گروه زمین شناسی، دانشگاه بیرجند، ایران
کلید واژه: مکانیابی, AHP, GIS, نخالههای ساختمانی و تخریب, هفتکل.,
چکیده مقاله :
افزایش سریع جمعیت و بالا رفتن نرخ شهرنشینی یکی از دغدغههای مقامات شهری برای مدیریت نخالههای ساختمانی و تخریب است. این پسماندهای جامد منجر به تخریب خاک، هوا و تودههای آبی شده و خطرات جدی برای سلامتی انسان به همراه دارد. مطالعه حال حاضر بر روی ترکیب رویکرد مدل AHP با GIS جهت مکانیابی بهینه سایت دفن نخالههای ساختمانی و تخریب در شهرستان هفتکل (استان خوزستان) تمرکز دارد. در این پژوهش به کمک نظر کارشناسان خبره، استفاده از 3 گروه معیار اصلی، 12 زیرمعیار و نیز بهرهمندی از تحلیل سلسله مراتبی فرآیند مکانیابی صورت گرفت. به کمک نرم افزار Expert Choice مقایسه معیارهای اصلی و زیر معیارها انجام شد و از سه گروه معیار اصلی، معیار موفولوژیکی با وزن 443/0 بیشترین وزن و در بین زیر معیارها شیب (800/0)، زمینشناسی (293/0)، فاصله از چاههای آب زیرزمینی (293/0) و فاصله از راهها (411/0) بیشترین وزن را بدست آوردند. اعمال وزنهای بدست آمده بر روی هرکدام از لایههای معیار در نرم افزار ArcGIS به کمک دستور Weighted Sum صورت گرفت و نتیجه نهایی این تحقیق نشان داد که 27229.79 هکتار از اراضی شهرستان هفتکل در محدوده خیلی مناسب جهت احداث سایت دفن نخالههای ساختمانی و تخریب قرار دارد.
The rapid increase in the population and the increase in the rate of urbanization is one of the concerns of the city authorities for the management of construction and demolition waste. These solid wastes lead to the destruction of soil, air and water bodies and pose serious risks to human health. The present study focuses on the combination of AHP model approach with GIS for the optimal location of construction and demolition waste burial site in Haftkal city (Khuzestan province). In this research, with the help of experts' opinion, 3 groups of main criteria, 12 sub-criteria and also benefiting from the hierarchical analysis of the positioning process were used. With the help of Expert Choice software, the comparison of the main criteria and sub-criteria was done, and among the three groups of main criteria, the morphological criterion with a weight of 0.443 has the most weight, and among the sub-criteria, slope (0.800), geology (0.293), distance They got the most weight from underground water wells (0.293) and distance from roads (0.411).The obtained weights were applied to each of the criterion layers in Arc GIS software with the help of the Weighted Sum command, and the final result of this research showed that 27229.79 hectares of land in Haftkal city is in a very suitable area for the construction of a construction and demolition waste burial site.
1) حجازی زاده، زهرا، خسروی، آراس، حسینی، سید اسعد، رحیمی، علیرضا و کربلایی، علیرضا (1400). پتانسیل سنجی مناطق کویری، بیابانی و سواحل مکران به منظور کسب انرژی از خورشید با استفاده از منطق فازی و مدل تحلیل سلسله مراتبی، نشریه تحقیقات کاربردی علوم جغرافیایی، 21(63)، 1-18.
2) خادمی شیراز، مظفر، روانشادنیا، مهدی، خشند، افشین، عباسیان جهرمی، حمیدرضا (1400). مکانیابی محل دفن پسماند ساختمانی با استفاده از ترکیب فرآیند تحلیل سلسله مراتبی فازی (FUZZY AHP) و سیستم اطلاعات مکانی (GIS) (مطالعه موردی: شهر قزوین)، نشریه مهندسی عمران امیرکبیر، 53(7)، 2909-2920.
3) فلاحی، لیلا، برزگری، قدرت، ندیری، عطاالله (1401). مکانیابی اصولی دفع نخاله های ساختمانی شهر تبریز با تاکید بر عوامل زمین شناسی زیست محیطی. مجله زمین شناسی کاربردی پیشرفته، 12(4)، 682-708.
4) قوانین، مقررات، ضوابط و استانداردهای محیط زیست انسانی. سازمان حفاظت محیط زیست کشور.
5) نرگسی، سارا، بیاتی خطیبی، مریم (1401). مکانیابی محل دفن نخاله های ساختمانی با استفاده از منطق فازی و فرآیند تحلیل سلسله مراتبی مطالعه موردی شهر ایلام، مجله کاربرد سنجش از دور و GIS در علوم محیطی، شماره چهارم، صفحه 57-79.
6) Alkaradaghi, K., Ali, S. S., Al-Ansari, N., Laue, J., & Chabuk, A. (2019). Landfill site selection using MCDM methods and GIS in the Sulaimaniyah Governorate, Iraq. Sustainability, 11(17), 4530.
7) AlZaghrini, N., Srour, F. J., & Srour, I. (2019). Using GIS and optimization to manage construction and demolition waste: The case of abandoned quarries in Lebanon. Waste Management, 95, 139-149.
8) Bahrani, S., Ebadi, T., Ehsani, H., Yousefi, H., & Maknoon, R. (2016). Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, case study: Shabestar, Iran. Environmental Earth Sciences, 75, 1-14.
9) Balew, A., Alemu, M., Leul, Y., & Feye, T. (2022). Suitable landfill site selection using GIS-based multi-criteria decision analysis and evaluation in Robe town, Ethiopia. GeoJournal, 87(2), 895-920.
10) Banias, G., Achillas, C., Vlachokostas, C., Moussiopoulos, N., & Tarsenis, S. (2010). Assessing multiple criteria for the optimal location of a construction and demolition waste management facility. Building and environment, 45(10), 2317-2326.
11) Biju, B. P., Nagalli, A., & De Moura, E. N. (2021). Geographic Information Systems supported by multi-criteria decision analysis to indicate potentially suitable areas for construction and demolition waste disposal. Brazilian Journal of Environmental Sciences (RBCIAMB), 56(3), 470-479.
12) Biluca, J., de Aguiar, C. R., & Trojan, F. (2020). Sorting of suitable areas for disposal of construction and demolition waste using GIS and ELECTRE TRI. Waste Management, 114, 307-320.
13) Ding, Z., Zhu, M., Wu, Z., Fu, Y., & Liu, X. (2018). Combining AHP-entropy approach with GIS for construction waste landfill selection—a case study of Shenzhen. International journal of environmental research and public health, 15(10), 2254.
14) Duan, H., Miller, T. R., Liu, G., & Tam, V. W. (2019). Construction debris becomes growing concern of growing cities. Waste Management, 83, 1-5.
15) Effat, H. A., & Hegazy, M. N. (2012). Mapping potential landfill sites for North Sinai cities using spatial multicriteria evaluation. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 125-133.
16) El Maguiri, A., Kissi, B., Idrissi, L., & Souabi, S. (2016). Landfill site selection using GIS, remote sensing and multicriteria decision analysis: case of the city of Mohammedia, Morocco. Bulletin of Engineering Geology and the Environment, 75, 1301-1309.
17) Errouhi, A. A., Bahi, L., Ouadif, L., Akhssas, A., Bouroumine, Y., & Bahi, A. (2018). Evaluation of landfill site choice using AHP and GIS case study: Oum Azza, morocco. In MATEC Web of Conferences (Vol. 149, p. 02047). EDP Sciences.
18) Eskandari, M., Homaee, M., & Mahmodi, S. (2012). An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste management, 32(8), 1528-1538.
19) Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste management, 32(2), 287-296.
20) Güler, D., & Yomralıoğlu, T. (2017). Alternative suitable landfill site selection using analytic hierarchy process and geographic information systems: a case study in Istanbul. Environmental Earth Sciences, 76, 1-13.
21) Kahraman, C., Cebi, S., Onar, S. C., & Oztaysi, B. (2018). A novel trapezoidal intuitionistic fuzzy information axiom approach: An application to multicriteria landfill site selection. Engineering Applications of Artificial Intelligence, 67, 157-172.
22) Kamdar, I., Ali, S., Bennui, A., Techato, K., & Jutidamrongphan, W. (2019). Municipal solid waste landfill siting using an integrated GIS-AHP approach: A case study from Songkhla, Thailand. Resources, Conservation and Recycling, 149, 220-235.
23) Khodaparast, M., Rajabi, A. M., & Edalat, A. (2018). Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environmental earth sciences, 77, 1-12.
24) Krishna, V. S., Pandey, K., & Karnatak, H. (2017). Geospatial multicriteria approach for solid waste disposal site selection in Dehradun city, India. Current Science, 549-559.
25) Moeinaddini, M., Khorasani, N., Danehkar, A., & Darvishsefat, A. A. (2010). Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste management, 30(5), 912-920.
26) Mohsin, M., Ali, S. A., Shamim, S. K., & Ahmad, A. (2022). A GIS-based novel approach for suitable sanitary landfill site selection using integrated fuzzy analytic hierarchy process and machine learning algorithms. Environmental Science and Pollution Research, 1-30.
27) Motlagh, Z. K., & Sayadi, M. H. (2015). Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran). Waste management, 46, 322-337.
28) Nas, B., Cay, T., Iscan, F., & Berktay, A. (2010). Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environmental monitoring and assessment, 160, 491-500.
29) Pasalari, H., Nodehi, R. N., Mahvi, A. H., Yaghmaeian, K., & Charrahi, Z. (2019). Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX, 6, 1454-1466.
30) Randazzo, L., Cusumano, A., Oliveri, G., Di Stefano, P., Renda, P., Perricone, M., & Zarcone, G. (2018). Landfill site selection for municipal solid waste by using AHP method in GIS environment: waste management decision-support in Sicily (Italy). Detritus, 2(1), 78.
31) Silva López, J. O., Salas López, R., Rojas Briceño, N. B., Gómez Fernández, D., Terrones Murga, R. E., Iliquín Trigoso, D., ... & Barrena Gurbillón, M. Á. (2022). Analytic Hierarchy Process (AHP) for a landfill site selection in Chachapoyas and Huancas (NW Peru): Modeling in a GIS-RS Environment. Advances in Civil Engineering, 2022, 1-15.
32) Wali Mahmood, K., Khzr, B. O., Othman, R. M., Rasul, A., Ali, S. A., & Ibrahim, G. R. F. (2021). Optimal site selection for landfill using the boolean-analytical hierarchy process. Environmental Earth Sciences, 80, 1-13.