ارزیابی کمی و کیفی روغن بذر در برخی گونههای شورپسند
محورهای موضوعی : زراعتسیمین سجادی شهربابکی 1 , حسینعلی اسدی قارنه 2 *
1 - گروه علوم باغبانی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)
2 - گروه علوم باغبانی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)
کلید واژه: اسید اولئیک, اسید پالمیتیک, اسیدهای چرب اشباع, اسیدهای چرب غیراشباع,
چکیده مقاله :
شوری یکی از مهمترین مسائلی است که باعث کاهش عمده سطح زمینهای قابل کشت و همچنین میزان تولید و کیفیت محصول میشود. شناسایی و اهلیسازی گونههای گیاهی مقاوم به شوری که دارای ارزش اقتصادی هستند، راهبرد مهمی محسوب میشود. این مطالعه بهمنظور بررسی درصد روغن و محتوای اسیدهای چرب بذر برخی گونههای شورپسند انجام شد. نتایج نشان داد، بیشترین درصد روغن (20/14 درصد) در گیاه شورزی سالیکورنیا (قلیا) و کمترین مقدار (65/2 درصد) در گیاه شورزی سنبله نمکی مشاهده شد. بیشترین میزان اسید پالمیتیک، اسید استئاریک و اسید لینولنیک در گیاه سنبله نمکی اندازهگیری شد. بیشترین مقادیر اسید لینولئیک در گیاهان سالیکورنیا (قلیا)، آسمانی سیخکدار و شور سودی و کمترین مقدار در گیاه سنبله نمکی به دست آمد. بیشترین مجموع اسیدهای چرب اشباع و غیراشباع بهترتیب در گونه سنبله نمکی و گونههای سالیکورنیا و شور ترکمانی اندازهگیری شد. علاوه بر این، درصد اسیدهای چرب غیراشباع در همه گونههای مورد بررسی به جز گونه سنبله نمکی در سطح بالایی بود. با توجه به شورپسند بودن این گیاهان و قابلیت رشد آنها در خاکهای شور، میتوان از این گیاهان به عنوان یکی از منابع استحصال روغن در این خاکها استفاده کرد.
Salinity is one of the most important issues that significantly reduce the area of arable land and also the amount of production and product quality. Identification and domestication of salinity-resistant plant species which have economic value is an important strategy. This study was conducted for evaluation of oil percent and fatty acids content in some wild halophyte’s plants. The results showed that the highest percentage of oil (14.20%) was obtained in Salicornia saline plant and the lowest amount (2.65%) was obtained in Halostachys caspica salinity plant. The highest levels of palmitic acid, stearic acid and linolenic acid were observed in Halostachys caspica. The highest amount of linoleic acid was obtained in Salicornia, Anabasis setifera and prickly pear plants and the lowest amount was obtained in Halostachys caspica. The highest total of saturated fatty acids was obtained in Halostachys caspica plant. The highest total of unsaturated fatty acids was observed in Salicornia and saline plants. In general, the results of this study showed that the use of halophyte species as a source of vegetable oil is economical, because these plants do not compete on quality soil and water with conventional crops. In addition, the percentage of unsaturated fatty acids in all studied species except Halostachys caspica was shown to be high and equal to most oilseeds. Due to the ability of these plants to grow in saline soils, they can be used as a resource of oil extraction in this condition.
منابع
1 .اسدی، ط.، بارگاهی، ا.، محبی، غ.، برمک، ع.، نبیپور، ا.، مهاجری برازجانی، س. و خلدبرین، ب.
1392 .تعیین غلظت روغن و اسیدهای چرب موجود در بذر گیاه ساحلی شورهزیست aegyptica Sueada .
فصلنامه طب جنوب. 1 :16-9.
2 .بخشی خانیکی، غ.ر و محمدی، ب. 1391 .مطالعه اکولوژی برخی از گونههای جنس سالسوال در استان
گلستان. تازههای بیوتکنولوژی سلولی مولکولی. 2 :52-45.
3 .حسینپور آزاد، ن.، نعمتزاده، ق.، آزادبخت، م.، کاظمیتبار و شکری، ا. 1390.بررسی اسیدهای
چرب بذر گل گاوزبان ایرانی در دو اکوتیپ مختلف. فصلنامه علمی پژوهشی تحقیقات گیاهان دارویی و
.595-587 :)4(27 .ایران معطر
4 .سعیدی، ک و امیدبیگی، ر. 1388 .بررسی میزان و ترکیب اسیدهای چرب، میزان کل مواد فنولیکی و
میزان اسانس بذر گیاه دارویی کلوس. فصلنامه علمی پژوهشی تحقیقات گیاهان دارویی و معطر ایران.
.119-113:)1(25
5 .شاهی، م.، ساغری، م.، زندی اصفهان، ا. و جایمند، ک. 1396 .بررسی کمی و کیفی اسیدهای چرب
در بذر دو گونه گیاهی شورپسند .Forssk.) L (fruticosa Suaeda و .L herbacea Salicornia به عنوان
منبع روغن خوراکی. دوماهنامه علمی –پژوهشی تحقیقات گیاهان دارویی و معطر ایران. 2 :243-233.
6 .عالمزاده گرجی، آ.، حشمتی، غ.، زندی اصفهان، ا. و معتمدی، ج. 1399 .ارزیابی کمی و کیفی
روغن بذر دو گونه شورروی europaeae Salicornia و strobilaceum Halocnemum به عنوان منبع
روغن خوراکی. نشریه علمی تحقیقاتی گیاهان دارویی و معطر ایران. 2 :357-348.
7. Ahangar, S., Pirvani, Z., Khodaparast, M.H. and Safavar, H. 2012. Comparison of fatty acid composition of olive oil in different regions of Iran. Journal of Nutrition Science and Technology. 2: 39-49.
8. Anwar, F., Bhanger, M., Nasir, MKA and Ismail, S. 2002. Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. Journal of Agricultural and Food Chemistry, 50: 4210-4214.
9. AOAC. 2000. Official methods of analysis of the AOAC. (17th ed.) Arlington, Virginia:AOAC, (Method: 969.33). Fatty Acids in Oils & Fats.
10. Ariffin, A.A., Bakar, J., Tan, C.P., Rahman, R.A., Karim, R. and Loi, C.C. 2009.Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chemistry. 114: 561-564.11. Asghari, Z.H., limohammadzadeh, S. and Mazaheri Tehrani, M. 2012. Extraction and quantification of essential fatty acids in leaves of Portulaca oleracea L. Iranian Journal of Medicinal Plants. 3: 157-166.
12. Batsale, M., Bahammou, D., Fouillen, L., Mongrand, S., Joubès, J. and Domergue, F.
2021. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants
to abiotic and biotic stresses. Cells, 10: 1284.
13. Bueno, M. and Cordovilla, M. 2021. Plant growth regulators applications enhance
tolerance to salinity and benefit the halophyte Plantago coronopus in saline agriculture.
Plants. 10: 1872.
14. Certain, C., Della Patrona, L., Gunkel-Grillon, P., Léopold, A., Soudant, P. and Le
Grand, F. 2021. Effect of salinity and nitrogen form in irrigation water on growth,
antioxidants and fatty acids profiles in halophytes Salsola australis, Suaeda maritima, and
Enchylaena tomentosa for a perspective of biosaline agriculture. Agronomy. 11: 449.
15. Costa, C.S.B., Chaves, F.C., Rombaldi, C.V. and Souza, C.R. 2018. Bioactive
compounds and antioxidant activity of three biotypes of the sea asparagus Sarcocornia
ambigua (Michx.) MA Alonso & MB Crespo: A halophytic crop for cultivation with
shrimp farm effluent. South African Journal of Botany. 117: 95–100.
16.El-Keblawy, A., Sanjay Gairola, S. and Arvind Bhatt, A. 2016. Maternal habitat affects
germination requirements of Anabasis setifera, a succulent shrub of the Arabian deserts.
Acta Botanica Brasilica. 30: 35–40.
17. Elsebaie, E.M., Elsanat, S.Y., Gouda, M.S. and Elnemr, K.M. 2013. Oil and fatty acids
composition in glasswort (Salicornia fruticosa) seeds. IOSR Journal of Applied Chemistry.
4: 06-09.
18. Franzen-Castle, L.D. 2010. Omega-3 and omega-6 fatty acids. neb guide, university of
nebaraska- linkoln extension. Institute of Agriculture and Natural Resource, 3p.
19. Ghanem, A.F.M., Mohamed, E., Kasem, A.M.M.A. and El-Ghamery, A.A. 2021.
Differential salt tolerance strategies in three halophytes from the same ecological habitat:
augmentation of antioxidant enzymes and compounds. Plants. 10: 1100.
20. Gharbi, E., Martínez, J.P., Benahmed, H., Fauconnier, M.L., Lutts, S. and Quinet, M.
2016. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte
Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild
salt stress. Physiologia Plantarum. 158: 152–167.
21. Ghasemi Firouzabadi, A., Jafari, M., Assareh, H., Arzani, H. and Javadi, A. 2014.
Investigation on the potential of halophytes as a source of edible oil case study: Suaeda
aegyptiaca and Halocnemum strobilaceum. International Journal of Biosciences. 5: 87-93.
22. Glenn, E.P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D.,
Nelson, S.G. and Felger, R.S. 2012. Three halophytes for saline-water agriculture: An
oilseed, forage and a grain crop. Environmental and Experimental
Botany.http://dx.doi.org/10.1016/j.envexpbot.2012.05.002.
23. Himabindu, Y., Chakradhar, T., Reddy, M.C., Kanygin, A., Redding, K.E. and
Chandrasekhar, T. 2016. Salt-tolerant genes from halophytes are potential key players of
salt tolerance in glycophytes. Environmental and Experimental Botany. 124: 39–63.
24. Joshi, R., Mangu, V.R., Bedre, R., Sanchez, L., Pilcher, W. and Zandkarimi, H. 2015.
Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants, in
Elucidation of Abiotic Stress Signaling in Plants, ed G. K. Pandey (New York, NY:
Springer), 243–279.
25. Kamal- Eldin, A. 2006. Effect of fatty acids and tocopherols on the oxidative stability of
vegetable oils. Eur. Journal Lipid Science Technology, 58, 1051- 1061.
26. Khoufi, S., Khamassi, K., Da Silva, J.A.T., Rezgui, S. and Ben Jeddi, F. 2014.
Watering regime affects oil content and fatty acid composition of six sunflower lines. New
Journal of Science. 7: 1–9.27. Kumari, A., Das, P., Parida, A.K. and Agarwal, P.K. 2015. Proteomics, metabolomics,
and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant
Science.6:537. doi: 10.3389/fpls.2015.00537.
28. Lamani, S., Anu-Appaiah, K.A., Murthy, H.N., Dewir, Y.H. and Rihan, H.Z. 2021.
Fatty acid profile, tocopherol content of seed oil, and nutritional analysis of seed cake of
wood apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species.
Horticulturae. 7: 275.
29. Li, K., Sinclair, A.J., Zhao, F. and Li, D. 2018. Uncommon fatty acids and
cardiometabolic health. Nutrients. 10: e1559.
30. Martins-Noguerol, R., Cambrolle, J., Mancilla-Leyton, J.M., Puerto-Marchena, A.,
Munoz-Valles, S., Millan-Linares, M.C., Millan, F., Martínez-Force, E., Figueroa,
M.E., Pedroche, J. and Moreno-Perez, A.J. 2021. Influence of soil salinity on the protein
and fatty acid composition of the edible halophyte Halimione portulacoides. Food
Chemistry. 352: 129370.
31. O’Leary, J.W., Glenn, E.P. and Watson, M.C. 1985. Agricultural production of
halophytes irrigated with seawater. Plant and Soil. 89: 311-321.
32. Osman, S.M., El Kashak, W.A., Wink, M. and El Raey, M.A. 2016. New isorhamnetin
derivatives from Salsola imbricata Forssk. Leaves with distinct anti-inflammatory activity.
Pharmacognosy Magazine. 12: S47.
33. Panth, N., Park, S.H., Kim, H.J., Kim, D.H. and Oak, M.H. 2016. Protective effect of
Salicornia europaea extracts on high salt intake-induced vascular dysfunction and
hypertension. International Journal of Molecular Sciences. 17: 1176.
34. Roche, J., Mouloungui, Z., Cerny, M. and Merah, O. 2019. Effect of sowing dates on
fatty acids and phytostérols patterns of Carthamus tinctorius L. Applied Sciences. 9: 2839.
35. Rustan, A. C and Drevon, C. A. 2005. Fatty Acids: Structures and Properties.
Encyclopedia of Life Sciences, 46, 1765-1772.
36. Wang, L., Zhao, ZY and Zhang, K. 2012. Oil content and fatty acid composition of
dimorphic seeds of desert halophyte Suaeda aralocaspica. African Journal of. Agricultural
Research, 7: 1910-4.
37. Weber DJ., Gul B, Khan M., Williams T., Wayman P. and Warner S. 2001.
Comparison of vegetable oil from seeds of native halophytic shrubs. Proceeding of
Shrubland Ecosystem Genetics and Biodiversity. RMRS-P-21. USDA Forest Service,
Ogden, UT, Rocky Mountain Research Station, USA: 287-290.
38.Zemour, K., Adda, A., Labdelli, A., Dellal, A., Cerny, M. and Merah, O. 2021. Effects
of genotype and climatic conditions on the oil content and its fatty acids composition of
Carthamus tinctorius L. Seeds. Agronomy. 11: 2048.
_||_