بررسی توالیهاي نوکلئوتیدی و اسیدآمینهای آنزیم اِنهانسین در باکولوویروسها
بررسی توالیهاي نوکلئوتیدی و اسیدآمینهای آنزیم اِنهانسین در باکولوویروسها
محورهای موضوعی : ویروس شناسی
مریم راشکی 1 * , مجتبی مرتضوی 2
1 - تنوع زیستی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان
2 - گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته،
کلید واژه: اِنهانسین, باکولوویروس, پردة دور غذا, کدون, نرمافزار,
چکیده مقاله :
سابقه و هدف: يكي از گروههای ژنی مهم كه در برخی از باکولوویروسهای بیمارگر حشرات حفاظتشدهاند، ژنهای ̗انهانسین هستند. در تحقیق حاضر، توالیهای نوکلئوتیدی و پروتئینی انهانسین و روابط فیلوژنتیک میان آنها همراه با تجزیهوتحلیل کدونی توالیهای نوکلئوتیدی و نواحی حفاظتشده با استفاده از پایگاههای محاسباتی بررسیشد. مواد و روشها: شصت و هفت توالي نوکلئوتیدی و اسیدآمینهای مربوط به ژن ̗انهانسین از بانکژن استخراج و برای رسم درخت فیلوژنتیکی بر مبنای روش حداکثر احتمال استفادهشد. توالیهای نوکلئوتیدی مربوط به نُه ژن منتخب برای بررسی فراوانی کدونها انتخاب و از پایگاه سکوئنس مانیپیولیشن سوئیت استخراج شدند. برای مشاهده نواحی حفاظتشده در توالیهای اسیدآمینهای از سایت موتیفسرچ استفاده شد. یافتهها: درخت رسمشده بر اساس توالیهای نوکلئوتیدی و اسیدآمینهای، به ترتيب دو و سه گروه اصلی را به نمایشگذاشت. تواليهاي آگروتیس سگتومگرانولوویروس، اپروفترا بروماتا نوکلئوپلیهدرویروس و كوريستونورا فوميفرانا مالتيپل نوکلئوپلیهدروویروس هر كدام در گروه مجزاي خود قرارداشتند. در تمام نه توالی نوکلئوتیدی منتخب، کدونهای فراوانتر شامل ATG و TGG بودند که به ترتیب مربوط به اسیدآمینههای متیونین و تریپتوفان هستند. در توالیهای اسید آمینهای، توالی حفاظتشدة HEXXH مشخصشد. توالیهای حفاظت نشدة متناظر HAISF، HCMAE، QTLGD، HQXXH و HVXXH در برخی مشاهدهشدند. نتیجهگیری: از آنجا که تولید و ترشح هر چه بیشتر آنزیم انهنسين میتواند برای افزایش فعالیت حشرهکشی باکولوویروسها استفاده شود و بصورت تجاری برای کنترل آفات بکاررود، مطالعات بیوانفورماتیک برای پیشبینی ویژگیهای نوکلئوتیدی و اسیدآمینهای پروتئینهای مذکور در این زمینه بویژه با تولید باکولوویروسهای نوترکیب میتواند بسیار راهگشاباشد.
Background & Objectives: A number of gene groups are conserved in some entomopathogenic baculoviruses, and one of these groups is the enhancin. In the present research, the nucleotide and protein sequence of enhancin and the phylogenetic relationships between them were investigated along with codon analysis of nucleotide sequences and motifs using computer databases. Materials & Methods: Sixty-seven nucleotide and amino acid sequences related to enhancin gene were extracted from GenBank and used to draw a phylogenetic tree based on the maximum likelihood method. Nucleotide sequences related to nine selected genes were selected and extracted from the Sequence Manipulation Suite database to check the frequency of codons. MOTIF Search site was used to find motifs in amino acid sequences. Results: The tree drawn based on nucleotide and amino acid sequences showed two and three main groups, respectively. The sequences of Agrotis segetum granulovirus, Operophtera brumata nucleopolyhedrovirus, and Choristoneura fumiferana multiple nucleopolyhedrovirus were each in their own separate group. In all nine selected nucleotide sequences, the most abundant codons included ATG and TGG that were associated with methionine and tryptophan, respectively. In the amino acid sequences, the conserved sequence HEXXH was identified. Unconserved sequences corresponding to HAISF, HCMAE, QTLGD, HQXXH and HVXXH were found in some sequences. Conclusion: Since the production and secretion of enhancin enzyme as much as possible can be used to increase the insecticidal activity of baculoviruses and be used commercially for pest control, bioinformatics studies to predict the nucleotide and amino acid characteristics of the mentioned proteins in this field, especially with the production of recombinant baculoviruses, can be helpful.
References
1. van Oers MM, Vlak JM. Baculovirus Genomics. Curr Drug Targets. 2007; 8: 1051-1068.
2. Vlak JM. The biology of baculovirus in vivo and in cultured insect cells. In: Vlak JM, Schlaeger EJ, Bernard AR, editors. Baculovirus and recombinant protein production processes. Editiones Roche. Interlakend, Switzerland;1992: 2-10.
3. Tinsley TW, Kelly, DC. Taxonomy and nomenclature of insect pathogenic viruses. In: Maramorosh K, Sherman KE, editors. Viral insecticides for biological control. Academic Press. Orlando, Florida; 1985: 3-25.
4. Del Rincon MC, Ibarra JE. Entomopathogenic viruses. In: Rosas N, editor. Biological Control of Insect Pests. 1st ed. USA. Studium Press LLC; 2011: 29-64.
5. Wang M, Hu Z. Cross-talking between baculoviruses and host insects towards a successful infection. Phil Trans R Soc B. 2019; 374: 20180324.
6. Sugiura N, Ikeda M, Shioiri T, Yoshimura M, Kobayashi M, Watanabe H. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirusand chondroitin sulfate from silkworm Bombyx mori. Glycobiology; 2013; 23: 1520–1530.
7. Herniou EA, Jehle JA. Baculovirus phylogeny and evolution. Curr Drug Targets. 2007; 8:1043-1050.
8. Slavicek JM. Baculovirus enhancins and their role in viral pathogenicity. In: Adoga, Moses, editors. Molecular virology. Rijeka, Croatia: InTech; 2012: 147-155.
9. Miller LK. Introduction to the Baculoviruses. In: Miller LK, editor. The Baculoviruses. New York, Plenum; 1997: 1-6.
10. Dix DB, Thompson RC. Codon choice and gene expression: synonymous codons differ in translational accuracy. Proc Natl Acad Sci U S A. 1989; 86: 6888-92.
11. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006; 23(2): 254-267.
12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406-25.
13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33(7): 1870-1874.
14. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000; 28(6): 1102-1104.
15. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE, A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32: 268-274.
16. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772-780.
17. Maddison W, Maddison D. Mesquite: a modular system for evolutionary analysis. Version 3.10. 2015; Avaliable from: http://mesquiteproject.
18. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004; 14(6): 1188-1190.
19. Jehle JA, Lange M, Wang H, Zhihong H, Wang Y, Hauschild R. Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology. 2006; 346: 180-193.
20. Wang P, Granados RR. An intestinal mucin is the target substrate for abaculovirus enhancin. Proc Natl Acad Sci. USA. 1997; 94:6977-6982.
21. Hashimoto Y, Corsaro BG, Granados RR. Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusia ni granulosis virus. J Gen Virol. 1991; 72:2645-2651.
22. Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature. 2003; 423:81–86.
23. Popham HJ, Bischoff DS, Slavicek JM. Both Lymantria dispar Nucleopolyhedrovirus Enhancin Genes Contribute to Viral Potency. J Virol. 2001; 75: 8639–8648.
24. Harrison RL. Genomic sequence analysis of the Illinois strain of the Agrotis ipsilon multiple nucleopolyhedrovirus. Virus Genes. 2009; 38:155–170.
25. Ignoffo CM, Garcia C. Aromatic/Heterocyclic amino acids and the simulated sunlight-ultraviolet inactivation of the Heliothis/ Helicoverpa baculovirus. Environ Entomol. 1995; 24(2): 480-482.
26. Bannach C, Buck DR, Bobby G, Graves LP, Li S, Chambers AC, Gan E, Arinto-Garcia R, Possee RD, KingL A. Optimizing recombinant baculovirus vector design for protein production in insect cells. Processes. 2021; 9(12): 2118.
27. Novoa EM, de Pouplana RL. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 2012; 28(11): 574-581.
28. Sosa-Gomez DR, Morgado FS, Correa RF T, SilaL A, Ardisson-Araju DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic viruses in the Neotropics: current status and recently discovered species. 2020. Neotrop Entomol. https://doi.org/10.1007/s13744-020-00770-1.
29. Kumar KK, Sridhar J, Murali-Baskaran RK, Senthil-Nathan S, Kaushal P, Dara SK, Arthurs S. Microbial biopesticides for insect pest management in India: current status and future prospects. J Invertebr Pathol. 2019; 165:74–81.