ارائه یک مدل بهینهسازی لجستیک معکوس جهت کاهش اثرات زیستمحیطی مبتنی بر مدیریت ضایعات
محورهای موضوعی : مدیریت صنعتیمهتا کاکویی 1 , محمود مدیری 2 * , قنبر عباسپور اسفدن 3
1 - گروه مديريت صنعتي، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشيار گروه مدیریت صنعتی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران(نويسنده مسئول)
3 - استاديار گروه مدیریت صنعتی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: مدل, بهینه سازی لجستیک معکوس, اثرات زیستمحیطی, مدیریت ضایعات,
چکیده مقاله :
هدف: هدف از اين تحقيق ارائه مدلي براي لجستيك معكوس در جهت كاهش اثرات زيست محيطي مي باشد
روششناسی پژوهش: این تحقیق به طراحی شبکه لجستیک معکوسی پرداخته است که کلیه ضایعات را در یک محل جمعآوری و بر اساس نیاز کارخانهها (ازلحاظ جنس و ماهیت ضایعات و ...) آنها را تفکیک و به مقصد موردنظر جهت بازیافت ارسال میکند. در این پژوهش مدل ریاضی مختلط جهت کاهش هزینههای کل سیستم ارائهشده استدر اين تحقيق پس از حل مدل مدل با داده هاي مختلف اعتبار سنجي شده و تحليل حساسيت براي پارامترهاي كليدي مدل انجام شده است.
یافتهها تعداد مراکز تسهیلات، تعداد محصولات و قطعاتی که باید از یک مرکز به مرکز دیگر ارسال شوند، میزان انتشار CO2 و هزینه کل مدل مشخصشده است. درنهایت، تحلیل حساسیت بر روی پارامترهای مدل انجامشده و مدل با تغییر دادههای ورودی در دو مورد مختلف مورد اعتبارسنجی قرارگرفته است. تحلیلهای حساسیت بر روی پارامترهای مختلف برای نشان دادن قابلیتهای مدل پیشنهادی انجام میشوند. نتایج نشان میدهد که هزینه مجاز انتشار CO2 تأثیر قابلتوجهی بر مقدار تابع هدف دارد.
اصالت / ارزشافزوده علمی: امروزه افزایش جمعیت و رشد سریع شهرنشینی، افزایش سطح زندگی اجتماعی، تولید زبالههای جامد را در جهان به میزان قابلتوجهی تسریع کرده است. ضایعات جامد تبدیل به یکی از مهمترین مسائل زیستمحیطی در سطح جهان شده است.
Purpose: Solid waste has become one of the most critical environmental issues in the world. Therefore, a waste management system to prevent further destruction of the environment is essential.
Research methodology: This research presents a model to reduce environmental impacts. This research includes an eleven-level, multi-product reverse logistics network that is capable of supporting a variety of industries whose products are at the end of their life cycle. This research designs a reverse logistics network that collects all waste in one place and separates it based on the needs of the factories (in terms of type and nature of waste, etc.) and sends it to the desired destination for recycling. In this research, a mixed mathematical model is presented to reduce the costs of the entire system. In this research, after solving the model, the model is validated with different data and sensitivity analysis is performed for the key parameters of the model.
Findings The number of facility centers, the number of products and parts to be shipped from one center to another, the amount of CO2 emissions, and the total cost of the model are specified. Finally, sensitivity analysis is performed on the model parameters and the model is validated by changing the input data in two different cases. Sensitivity analyses are performed on different parameters to demonstrate the capabilities of the proposed model. The results show that the allowable cost of CO2 emissions has a significant impact on the value of the objective function.
Originality/scientific added value: Today, population growth and rapid urbanization, along with rising social standards of living, have significantly accelerated the production of solid waste in the world. Solid waste has become one of the most important environmental issues worldwide.
Abu-Qdais, H. M. Al-Ghazo, and E. Al-Ghazo, Statistical analysis and characteristics of hospital medical waste under novel Coronavirus outbreak. Global Journal of Environmental Science and Management, 2020. 6(Special Issue (Covid-19)): p. 21-30. https://doi.org/10.22034/GJESM.2019.06.SI.03
Abdallah, T., A. Diabat, and D. Simchi-Levi. A carbon sensitive supply chain network problem with green procurement. in The 40th International Conference on Computers & Indutrial Engineering. 2010. IEEE
Bautista, J. and J. Pereira, Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona. Omega, 2006. 34(6): p. 617-629. https://doi.org/10.1016/j.omega.2005.01.013
Das, S. and B.K. Bhattacharyya, Optimization of municipal solid waste collection and transportation routes. Waste Management, 2015. 43: p. 9-18. https://doi.org/10.1016/j.wasman.2015.06.033
Gharibi, K. and S. Abdollahzadeh, A mixed-integer linear programming approach for circular economy-led closed-loop supply chains in green reverse logistics network design under uncertainty. Journal of Enterprise Information Management, 2021. https://doi.org/10.1108/JEIM-11-2020-0472
Govindan, K. et al. Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network. Journal of Cleaner Production, 2017. 165: p. 1598-1619. https://doi.org/10.1016/j.jclepro.2017.06.180
Govindan, K. et al. Medical waste management during coronavirus disease 2019 (COVID-19) outbreak: A mathematical programming model. Computers & Industrial Engineering, 2021. 162: p. 107668. https://doi.org/10.1016/j.cie.2021.107668
Hashemi, S.E. A fuzzy multi-objective optimization model for a sustainable reverse logistics network design of municipal waste-collecting considering the reduction of emissions. Journal of Cleaner Production, 2021. 318: p. 128577. https://doi.org/10.1016/j.jclepro.2021.128577
Homayouni, Z. and M.S. Pishvaee, A bi-objective robust optimization model for hazardous hospital waste collection and disposal network design problem. Journal of Material Cycles and Waste Management, 2020. 22: p. 1965-1984 https://doi.org/10.1007/s10163-020-01081-8
Jaunich, M.K. et al. Life-cycle modeling framework for electronic waste recovery and recycling processes. Resources, Conservation and Recycling, 2020. 161: p. 104841 https://doi.org/10.1016/j.resconrec.2020.104841
Kargar, S. M. Pourmehdi, and M.M. Paydar, Reverse logistics network design for medical waste management in the epidemic outbreak of the novel coronavirus (COVID-19). Science of the Total Environment, 2020. 746: p. 141183. https://doi.org/10.1016/j.scitotenv.2020.141183
Kannan, G., P. Sasikumar, and K. Devika, A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Applied mathematical modelling, 2010. 34(3): p. 655-670
Kilic, H.S. U. Cebeci, and M.B. Ayhan, Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey. Resources, Conservation and Recycling, 2015. 95: p. 120-132. https://doi.org/10.1016/j.resconrec.2014.12.010
Lee, C. et al. A mathematical model for municipal solid waste management–A case study in Hong Kong. Waste management, 2016. 58: p. 430-441 https://doi.org/10.1016/j.wasman.2016.06.017
Li, G. J. Liu, and A. Giordano, Robust optimization of construction waste disposal facility location considering uncertain factors. Journal of Cleaner Production, 2022. 353: p. 131455 https://doi.org/10.1016/j.jclepro.2022.131455.
Nanaki, E.A. C.J. Koroneos, and G.A. Xydis, Environmental impact assessment of electricity production from lignite. Environmental Progress & Sustainable Energy, 2016. 35(6): p. 1868-1875 https://doi.org/10.1002/ep.12427.
Ottoni, M. P. Dias, and L.H. Xavier, A circular approach to the e-waste valorization through urban mining in Rio de Janeiro, Brazil. Journal of Cleaner Production, 2020. 261: p. 120990 https://doi.org/10.1016/j.jclepro.2020.120990
Pishvaee, M.S., J. Razmi, and S.A. Torabi, Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 2012. 206: p. 1-20. https://doi.org/10.1016/j.fss.2012.04.010
Yu, H., et al., A stochastic network design problem for hazardous waste management. Journal of cleaner production, 2020. 277: p. 123566 https://doi.org/10.1016/j.jclepro.2020.123566
Xiao, Z., et al., Location-allocation problem of reverse logistics for end-of-life vehicles based on the measurement of carbon emissions. Computers & Industrial Engineering, 2019. 127: p. 169-181. https://doi.org/10.1016/j.cie.2018.12.012
Zarbakhshnia, N., et al., A novel multi-objective model for green forward and reverse logistics network design. Journal of cleaner production, 2019. 208: p. 1304-1316. https://doi.org/10.1016/j.jclepro.2018.10.138(