• Home
  • ساناز نقیبی
  • OpenAccess
    • List of Articles ساناز نقیبی

      • Open Access Article

        1 - Amelioration of the acid blue oxidation process by as-synthesized ZnO nanoparticles: Optimization of the dye and photocatalyst concentration together with the pH of the solution
        Mehrnaz Gharagozloua Sanaz Naghibi Mohammad Ebrahim Olya
        In this research, ZnO nanoparticles (NPs) were synthesized using a binary Zn(II) Schiff-base complex. The complex heat-treated to prepare ZnO nanoparticles via thermal decomposition route at a temperature of 500 °C. The formation of single-phase ZnO nanoparticles an More
        In this research, ZnO nanoparticles (NPs) were synthesized using a binary Zn(II) Schiff-base complex. The complex heat-treated to prepare ZnO nanoparticles via thermal decomposition route at a temperature of 500 °C. The formation of single-phase ZnO nanoparticles and their microstructures were studied by XRD pattern, SEM and TEM observation. The photo-degradation characteristic of the as-prepared ZnO NPs was evaluated and acid blue 193 was investigated as the organic colorant in a photocatalytic reactor by advanced oxidation process (AOP). The effects of operating parameters such as initial concentration of the dye, amount of catalyst and the pH value of the solutions were studied to determine the optimum condition of the process to improve the photo-degradation performance. According to the results, impressive photo-degradation of acid blue is conceivable by the as-synthesized ZnO NPs. The optimum operating conditions to achieve photo-degradation were found to be a solution with pH value of 6, the catalyst concentration of 0.04 g/L, and the dye concentration of 10 g/L. The highest efficiency would be achieved at natural pH of the solution (pH=~6). The optimum concentration of ZnO NPs is about 0.04 g/L. More or less amount of the photocatalyst could not enhance the photodegradation efficiency. At the constant photocatalyst concentration, any increase in dye amounts leads to decrease in degradation efficiency. Manuscript profile
      • Open Access Article

        2 - Application of Taguchi design for optimization of corrosion behavior of amorphous silica thin film deposited through sol-gel dipping technique
        Hamideh Aghasi Sanaz Naghibi
        Amorphous silica thin films were applied on the 316L stainless steel substrates by sol-gel dipping technique. The starting chemicals (TEOS, ethanol, HCl, PEG, and NaOH) were used to prepare a gel and then deposited on a substrate. The microstructure, topography, corrosi More
        Amorphous silica thin films were applied on the 316L stainless steel substrates by sol-gel dipping technique. The starting chemicals (TEOS, ethanol, HCl, PEG, and NaOH) were used to prepare a gel and then deposited on a substrate. The microstructure, topography, corrosion behavior, and surface hardness were investigated using SEM, AFM, electrochemical method, and micro-hardness measurements. The fabrication parameters utilized to enhance the anticorrosion and mechanical properties including calcinations temperature, pH value, and mole ratio of alkoxide to alcohol were studied. Taguchi approach was used as a statistical experimental design technique to set the optimal parameters. Roughness and current corrosion density were evaluated as the response parameter. pH is the parameter of most major effect on the roughness; pH less than or equal to 4 increases the roughness but more pH value decreases the roughness. The ratio of alkoxide to alcohol is the most influential variable on current corrosion density. The increase of alkoxide amount improves the corrosion behavior, which might be related to the increase of the coating density. Consequently, the optimized conditions obtained through Taguchi method target at reaching the highest anticorrosion efficiency involving calcination at 300 °C, pH=6, and the mole ratio of alkoxide to alcohol as 0.167. Manuscript profile
      • Open Access Article

        3 - Evaluation of Photocatalytic Activity of Fe Doped TiO2 Thin Film Prepared by sol-gel hot dip-coating
        Sanaz Naghibi Shohreh Vahed Omid Torabi
        The application of Fe–TiO2 photocatalysis using sol–gel method by hot–dipping technique was investigated. Then, the influences of fabrication parameters, molar ratios of Fe to TiO2, the sol temperature, poly ethylene glycol (PEG) content and the number More
        The application of Fe–TiO2 photocatalysis using sol–gel method by hot–dipping technique was investigated. Then, the influences of fabrication parameters, molar ratios of Fe to TiO2, the sol temperature, poly ethylene glycol (PEG) content and the number of dipping cycles on the photocatalytic activity in visible light region were mainly studied. The experimental results revealed the sample with the molar ratios of Fe to TiO2: 0.015, the sol temperature: 70 °C, PEG content: 2 wt. % and the number of dipping cycles: 5 showed the best result. The photodegradation efficiency of this sample after 2 h visible light irradiation increased up to 80% and no crack was detected on the surface of the thin film. When the sol temperature increased from 25 to 70 ºC (the boiling point of the sol), its viscosity increased due to the existence of PEG via forming cross linkage. This phenomenon caused to change the microstructure and improve in optical properties. Manuscript profile
      • Open Access Article

        4 - The Effect of the Mg Content on Mechanosynthesis of ZrB2–SiC–ZrC Composite in the Mg/ZrSiO4/B2O3/C System
        Omid Torabi Sanaz Naghibi Mohammad Hossein Golabgir Hamid Tajizadegan Amin Jamshidi
        The influence of magnesium content on the mechanosynthesis of ZrB2–SiC–ZrC composite in Mg/ZrSiO4/B2O3/C mixture was investigated. Thermodynamic evaluations revealed that the amount of Mg played a main role, thereby; the overall reaction enthalpy and adiabat More
        The influence of magnesium content on the mechanosynthesis of ZrB2–SiC–ZrC composite in Mg/ZrSiO4/B2O3/C mixture was investigated. Thermodynamic evaluations revealed that the amount of Mg played a main role, thereby; the overall reaction enthalpy and adiabatic temperature (Tad) changed by variation of magnesium content. According to differential thermal analysis (DTA) results, after 45min milling, the temperature of combustion reaction decreased to 576 ◦C and all the reactions occurred, simultaneously. The experimental findings indicated the type of reactions in the mixture powder with stoichiometric ratio (7mol Mg) was mechanically induced self-sustaining reaction (MSR). When the Mg content was within a range of 6-7mol, the magnesiothermic reduction was occurred in MSR mode and the carbothermal reaction was activated, hence; the carbon acted not only as a carbide former agent but also as a reductant. MSR mode magnesiothermic reduction and gradual carbothermal reduction were occurred when the Mg value was 11/2-6 mol. At lower Mg contents in mixture (5mol), the reduction reaction proceeded through a gradual mode and no carbothermal reaction occurred. Manuscript profile
      • Open Access Article

        5 - Fabrication of high–strength alumina composite foams through gel–casting process
        Sanaz Naghibi Elham Sheikhi
        A water–soluble gelatin combined with polyethylene microspheres were developed to prepare alumina composite foam. Gelatin was used as the gelling agent and polyethylene was used as pore making template. On the other hand, kaolin was used to provide green strength More
        A water–soluble gelatin combined with polyethylene microspheres were developed to prepare alumina composite foam. Gelatin was used as the gelling agent and polyethylene was used as pore making template. On the other hand, kaolin was used to provide green strength and CuO was applied to decrease the required temperature as a sinter aid. Alumina bodies need elevate temperature for sintering, increasing the process cost. This process could be carried out at 1000 ºC, therefore more appropriate than that of the previous studies. The effect of CuO amounts on the open porosity, water adsorption, and density as well as on the mechanical strength of sintered foams was evaluated. The resulting samples, with relative densities between 0.97 and 1.16 g/cm3, and compressive strength between 1.4 – 5.5 MPa, comprised microstructures of semi–spherical pores. The phase component of the samples consist ~60 % alumina, 11 – 15 % CuAl2O4, and 24 – 27 % Al2SiO5. The degree of crystallinity measured in range of 66 – 83 %. These changes are related to the CuO/Al2O3 ratio. On the other hand, gelatin and polyethylene as the gelling agent and pore template were used successfully in gel–casting process. Manuscript profile
      • Open Access Article

        6 - Taguchi optimization of TiO2 thin film to defeat microbiologically induced corrosion of stainless steel
        Hooman Baghi Baghban Sanaz Naghibi
        Although microbiologically induced corrosion (MIC) is well known by design engineers and manufacturers, most current marine devices continue to be impressed by MIC. This phenomenon originates from colonization of anaerobic microorganisms on metal surface, and subsequent More
        Although microbiologically induced corrosion (MIC) is well known by design engineers and manufacturers, most current marine devices continue to be impressed by MIC. This phenomenon originates from colonization of anaerobic microorganisms on metal surface, and subsequently increases the corrosion rate. An investigation was made to defeat MIC by means of applying a TiO2 thin film on metal surface. 316L stainless steel and sol-gel dipping technique were chosen as the base metal and application method, respectively. The depositing variables including PEG adding amount, pH of the sol, calcination temperature (T), and dipping cycles number, were analyze by Taguchi statistical model to determine their influences on response parameters: bactericidal efficiency, current corrosion density (icorr), crystallinity, crystallite size, and surface roughness (Ra). A parameter termed Aim was defined to comprise all the response parameters. Taguchi Predicted conditions to achieve the highest Aim value. For this aim, PEG content, pH, T, and dipping cycles should be equal to 1 g per 100 mL of sol, 11, 600 °C, and 2 cycles, respectively. These conditions were applied to prepare the optimized sample. Careful evaluation of this sample approved the Taguchi prediction and the highest Aim value was observed. Manuscript profile