Existence of best proximity and fixed points in $G_p$-metric spaces
Subject Areas : Fixed point theory
1 - Department of Mathematics, Maharshi Dayanand University, Rohtak, India
2 - Department of Mathematics, Maharshi Dayanand University, Rohtak, India
Keywords: fixed point, $G_p$-metric space, orbital admissible mapping,
Abstract :
In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spaces. We also provide examples to analyze and support our results.
[1] A. H. Ansari, M. A. Barakat, H. Aydi, New approach for common fixed point theorems via C-class functions in Gp- metric spaces, J. Functions Spaces. (2017), 2017:2624569.
[2] A. H. Ansari, A. Razani, N. Hussain, New best proximity point results in G-metric space, J. Linear. Topo- logical. Algebra. 6 (1) (2017), 73-89.
[3] M. Asadi, E. Karapinar, A. Kumar, α − ψ-Geraghty contraction on generalized metric spaces, J. Inequal. Appl. (2014), 2014:423.
[4] H. Aydi, S. Chauhan, S. Radenovi´c, Fixed points of weakly compatible mappings in G-metric spaces satisfying common limit range property, Math and Informatics. 28 (2) (2013), 197-210.
[5] H. Aydi, A. Felhi, On best proximity points for various α-proximal contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9 (8) (2016), 5202-5218.
[6] H. Aydi, A. Felhi, E. Karapinar, On common best proximity points for generalized α-ψ-proximal contractions, J. Nonlinear Sci. Appl. 9 (5) (2016), 2658-2670.
[7] H. Aydi, A. Felhi, S. Sahmim, Related fixed point results for cyclic contractions on G-metric spaces and applications, Filomat. 31 (3) (2017), 853-869.
[8] S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fundam. Math. 3 (1922), 133-181.
[9] N. Bilgili, E. Karapinar, P. Salimi, Fixed point theorems for generalized contractions on Gp-metric spaces, J. Inequal. Appl. 39 (2013), 1-13.
[10] B. C. Dhage, A study of some fixed point theorems, Ph.D. Thesis (Marathwada Univ. Aurangabad), India, 1984.
[11] B. C. Dhage, Generalized metric space and mappings with fixed point, Bull. Cal. Math. Soc. 84 (1992), 329-336.
[12] S. Gahler, 2-metriche raume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.
[13] M. Jleli, B. Samet, Best proximity points for α − ψ-proximal contractive type mappings and applications, Bull. des Sci. Mathematiques. 137 (2013), 977-995.
[14] Z. Mustafa, H. Aydi, E. Karapinar, Generalized Meir-Keeler type contractions on G-metric spaces, Appl. Math. Comput. 219 (2013), 10441-10447.
[15] Z. Mustafa, H. Aydi, E. Karapinar, On common fixed points in G-metric spaces using (E.A) property, Comput. Math. Appl. 6 (6) (2012), 1944-1956.
[16] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. (2008), 2008:189870.
[17] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex. Anal. 7 (2006), 289-297.
[18] Z. Mustafa, B. Sims, Some remarks concerning D-metric space, Proc. Inter. Conf. Fixed Point Theory Appl. (2004), 189-198.
[19] V. Paravneh, J. R. Roshan, Z. Kadelburg, On generalized weakly Gp contractive mappings in ordered Gp−metric spaces, Gulf J. Math. 7 (2013), 78-97.
[20] V. Pragadeeswarar, M. Marudai, P. Kumam, K. Sitthithakerngkiet, The existence and uniqueness of coupled best proximity point for proximally point for proximally coupled contraction in a complete ordered metric space, Abstr. Appl. Anal. (2014), 2014:274062.
[21] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. (2014), 2014:190.
[22] S. Radenovi´c, Remarks on some recent coupled coincidence point results in symmetric G-metric spaces, Journal of Operator. (2013), 2013:290525.
[23] S. Radenovi´c, S. Panteli´c, P. Salimi, J. Vujakovi´c, A note on some tripled coincidence point results in G-metric space, Inter. J. Math. Sci. Engin. Appl. 6 (6) (2012), 23-38.
[24] S. Rathee, K. Dhingra, Best proximity point for generalized Geraghty-contractions with MT-condition, Int. J. Comput. Appl. 127 (8) (2015), 8-11.
[25] S. Rathee, K. Dhingra, A. Kumar, Existence of common fixed point and best proximity point for generalized nonexpansive type maps in convex metric space, Springerplus. (2016), 5:1940.
[26] S. Sadiq Basha, P. Veeramani, Best proximity point theorems for multifunctions with open fibres, J. Approx.
Theory. 103 (2000), 119-129.
[27] W. Shatanawi, S. Chauhan, M. Postolache, M. Abbas, S. Radenovi´c, Common fixed point for contractive mappings of integral type in G-metric spaces, J. Adv. Math. Stud. 6 (1) (2013), 53-72.
[28] W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces. Fixed Point Theory Appl. (2012), 2012:93.
[29] N. Tahat, H. Aydi, E. Karapinar, W. Shatanwai, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. (2012), 2012:48.
[30] M. R. A. Zand, A. D. Nezhad, A generalization of partial metric spaces, J. Contemp. Appl. Math. 24 (2011), 86-93.